

INTERNATIONAL JOURNAL FOR RESEARCH IN EMERGING SCIENCE AND TECHNOLOGY, VOLUME-5, ISSUE-6, JUN-2018 E-ISSN: 2349-7610

VOLUME-5, ISSUE-6, JUN-2018 COPYRIGHT © 2018 IJREST, ALL RIGHT RESERVED 17

3D Scene Retrieval from Text

Gireesh Singh Thakurathi
1
, Melvin Thomas

2
, and Haresh Savlani

3

1
Gireesh Singh Thakurathi, Computer Engineering/ Thadomal Shahani Engineering College/ Mumbai University,

Ghatkopar West, Mumbai - 400084, Maharashtra, India
1
gireeshsinghthakurathi@gmail.com

2
Melvin Thomas, Computer Engineering/ Thadomal Shahani Engineering College/ Mumbai University, Mulund West,

Mumbai- 400080, Maharashtra, India
2
melvinthomas31@gmail.com

3
Haresh Savlani, Computer Engineering/ Thadomal Shahani Engineering College/ Mumbai University, Borivali West,

Mumbai – 400092, Maharashtra, India
3
hareshsavlani@gmail.com

ABSTRACT

Translating elusive ideas or statements into visual scenes is quite a daunting task. First the thought has to be laid out explicitly and

clearly in the form of a written statement which acts as the foundation for the conversion. Then a professional strives to create a

mental image of the given statement. Finally, another professional starts placing models according to the abstract image created in

the previous stage in a model rendering software. Thus, converting a single text to corresponding visual element is a rather

challenging task. This paper will focus on automating this entire transformation. It promises to convert any arbitrary descriptive

text into a representative scene. The proposed system parses a user written input text, extracts information using Natural Language

Processing (NLP) and tags relevant units. It then associates every object with model and places them according to the derived

relations and spatial dependencies. Ultimately the user can make changes and minor adjustments to the final scene using

Blender[1] in-build controls.

Index Term— Text, scene, NLP, dependency, parser, supporter, dependent, preposition, bounding box, 3d models, refinement,

POS tags, heuristics, collision.

1. INTRODUCTION

Natural language is an easy and effective medium for

describing visual ideas and mental images. It is a tool that

allows people to describe visual scenes in a straightforward

manner. Automatic generation of scene by using text

descriptions as input offers an efficient approach to human

computer interaction with graphics and could speed up the

whole generating process. It also makes graphics more

accessible to users in non-graphics domains. Thus, foreseeing

the emergence of language-based scene generation systems to

let ordinary users quickly create scenes without having to learn

special software, acquire artistic skills, or even touch a desktop

window-oriented interface.

The paper explains the existing solutions, implementation of

the proposed system in detail, its limitations and future work.

2. Existing Solution

Already quite a few projects investigated the field of natural

language input for creating virtual environments.

2.1. SHRDLU program

The SHRDLU program was one of the earliest systems that

were able to understand and evaluate natural language. User

interaction was allowed via simple English dialogs about a

small blocks world shown on an early display screen. [2]

mailto:3author@first-third.edu
mailto:3author@first-third.edu

INTERNATIONAL JOURNAL FOR RESEARCH IN EMERGING SCIENCE AND TECHNOLOGY, VOLUME-5, ISSUE-6, JUN-2018 E-ISSN: 2349-7610

VOLUME-5, ISSUE-6, JUN-2018 COPYRIGHT © 2018 IJREST, ALL RIGHT RESERVED 18

Fig-1: SHRDLU program

2.2. Wordseye

One of the most well-known projects in the field of language-

based 3D scene generation is WordsEye, created by B. Coyne

and R. Sproat. [3] It generates static scenes out of a user-given

text. An entered text consists of simple sentences that describe

positions of objects and their orientations, colors, textures, and

sizes. [4]

Fig-2: Wordseye

2.3. Text to Scene Generation

The Text to Scene Generation project aims to explore how to

automatically generate 3D scenes from a natural text

description. [5] When describing a scene, people will often

omit important common-sense knowledge about the placement

of objects. For instance, it is uncommon for people to state that

chairs are usually on the floor and upright, and that you eat a

cake from a plate on a table. This project attempts to learn

such knowledge from a dataset. [6]

Fig-3: Text to scene generation [7]

Most previous work paid more attention to the language

engine, but less attention to the graphics engine which was just

designed to present scene with poor visual effects.

3. Implementation Details

The technical execution of the system has been divided into 3

main phases namely,

Phase 1: Information extraction and refinement

Phase 2: Creation of directed graph

Phase 3: Rendering virtual environment

Each phase has been further subdivided into further small

steps as follows.

3.3. Phase I

This phase consists of extracting information which will be

needed for the smooth execution of later stages. Extracted

information belonging to the same data type are later saved in

similar data structures for future reference.

3.1.1. Part of Speech Tagging

The input sentence is then divided into tokens i.e., the sentence

is divided into atomic units(words) and all the words as tagged

and classified according to their type (nouns, pronouns,

determiner, adverbs, etc.). The technology used for tokenizing

the input descriptive text is Stanford Tagger from Stanford

CoreNLP package. [8]‖.

3.1.2. Extracting Dependencies

A dependency parser analyzes the grammatical structure of a

sentence, establishing relationships between "head" words and

words which modify those heads. The figure below shows a

dependency parse of a short sentence. The arrow from the

word moving to the word faster indicates that faster modifies

moving, and the label advmod assigned to the arrow describes

the exact nature of the dependency.

INTERNATIONAL JOURNAL FOR RESEARCH IN EMERGING SCIENCE AND TECHNOLOGY, VOLUME-5, ISSUE-6, JUN-2018 E-ISSN: 2349-7610

VOLUME-5, ISSUE-6, JUN-2018 COPYRIGHT © 2018 IJREST, ALL RIGHT RESERVED 19

Fig-4: Dependency parser

The parser provides Universal Dependencies as well as phrase

structure trees. Typed dependencies are otherwise known

grammatical relations.

3.1.3. Spatial Prepositions

Prepositions that indicate a spatial relationship explain where

one object is in relation to another. Prepositions are grouped

according to their meaning.

Table-1: Grouped Prepositions

3.1.4. Refinement

This step consists of fetching the core elements needed by the

system for creation of a 3D scene. Supporters, dependents and

prepositions are extracted from the sentences using the

dependencies and POS tags which are then saved in a text file

for creation of directed graph.

3.2. Phase II

This directed graph is used for determining the relationships

between objects. In this system, the nodes represent various

objects and the links between them represent their

dependency. There are 6 rules for creation of directed graph.

Algorithm for creation of directed graph

INPUT: Supporters, Dependents, Dependencies, Prepositions.

OUTPUT: Directed Acyclic Graph.

3.2.1. Rule 1

New object is added

If (object node does not exist)

 Create new dependent or supporter node and link it using

the preposition.

Fig-5: Rule 1

3.2.2. Rule 2

A supporter may serve for various dependents and therefore

If (supporter is not present)

 Then add new object node and link it using preposition.

or else

 Abort to avoid repetition.

Fig-6: Rule 2

3.2.3. Rule 3

Dependents may depend on different supporters and therefore

If (dependent is not present)

 Then add new object node and link it using preposition.

or else

 Abort to avoid repetition.

Fig-6: Rule 3

3.2.4. Rule 4

Supporter POSI qualifies to be a dependent POSI

If (supporter POSI acts as a dependent POSI)

 Link supporter POSI now acting as dependent to its

supporters.

INTERNATIONAL JOURNAL FOR RESEARCH IN EMERGING SCIENCE AND TECHNOLOGY, VOLUME-5, ISSUE-6, JUN-2018 E-ISSN: 2349-7610

VOLUME-5, ISSUE-6, JUN-2018 COPYRIGHT © 2018 IJREST, ALL RIGHT RESERVED 20

Fig-7: Rule 4

3.3.5. Rule 5

Dependent POSI qualifies to be a supporter POSI

If (dependent POSI acts as a supporter POSI)

 Link dependent POSI now acting as supporter to its

dependents.

Fig-8: Rule 5

3.2.6. Rule 6

A cycle is detected in the directed graph

If (a cycle is formed)

 Create another dependent node as the new child of the

parent node.

Fig-9: Rule 6

3.3. Phase III

This phase concentrates on importing the object models and

placing them onto the rendering platform like Blender in a

way which is dictated by the information extracted from the

initial phases. Wordnet is used to pick the correct model from

the database and bounding box coordinates are used to avoid

collisions between neighboring objects.

3.3.1. Algorithm for importing and placing object

according to spatial preposition

Input: 3D models.

Output: 3D scene as per input descriptive text.

If (spatial preposition == ―on‖)

 Place new model just above the max height of the previous

model.

If (spatial preposition == ―under‖)

 Place new model below the base of the previous model.

If (spatial preposition == ―above‖)

 Place above max height with randomly generated offset.

If (spatial preposition == ―near‖)

 Place new model in any one of the four randomly chosen

directions.

If (spatial prepositions == ―away‖)

 Same as near but with a comparatively large offset.

If (spatial preposition == ―inside‖)

 Place new model inside the previous (hollow) model.

If (spatial preposition == ―outside‖)

 Place the new model just outside the previous model.

If (spatial preposition == ―ahead‖)

 Place the new model to the north of the previous model.

If (spatial preposition == ―behind‖)

 Place the model to the south of the previous model.

INTERNATIONAL JOURNAL FOR RESEARCH IN EMERGING SCIENCE AND TECHNOLOGY, VOLUME-5, ISSUE-6, JUN-2018 E-ISSN: 2349-7610

VOLUME-5, ISSUE-6, JUN-2018 COPYRIGHT © 2018 IJREST, ALL RIGHT RESERVED 21

Fig-10: Spatial preposition interpretation

3.3.2. Bounding box coordinates, collision detection and

resolution

It is used to determine the boundaries of the object so that it

can be used to detect collisions. Once collision is detected.

The current object is moved in a particular direction (using

randomizer) point by point until the collision is resolved.

Fig-11: Bounding Box

(a) (b)

Fig-12: (a) Collision detection (b) Collision resolution

4. Limitations

A. The objects in a single sentence are in the form of

supporter-dependent pairs. and linked using a preposition.

B. Each sentence has to be formed using the listed objects and

preposition.

C. Each sentence should consist a maximum of one supporter

and two dependents only.

D. The objects in the sentences should share some relationship

between each other.

E. The system does not respond to verbs, adjectives, adverbs,

colors, size or quantity.

F. Use of conjunctions is allowed.

G. System cannot recognize named entities.

H. As the complexity of the scene increases, the chances of

collision rise.

5. Future Work

More can be contributed by creating a more realistic scene by

incorporating heuristics making the bounding box more

efficient.

5.1. Naturalness

The system would improve the appearance of a created 3D

scene by applying the following two positioning heuristics.

5.1.1. Distance Heuristic

The first heuristic is used to ensure that any two objects are not

placed too close or far away from each other.

5.1.2. Rotation Heuristics

This heuristic applies a little random rotation to all of the

occurring objects within a scene in order to achieve an

―untidy‖ appearance.

Consider the example:

The ball is on the table. The box is to the left of the table. The

dustbin is in front of the table. The bird is above the ball. The

chair is to the right of the table.

INTERNATIONAL JOURNAL FOR RESEARCH IN EMERGING SCIENCE AND TECHNOLOGY, VOLUME-5, ISSUE-6, JUN-2018 E-ISSN: 2349-7610

VOLUME-5, ISSUE-6, JUN-2018 COPYRIGHT © 2018 IJREST, ALL RIGHT RESERVED 22

Fig-13: Imparting naturalness to scene

5.5.2. Minimum Bounding Box

Collision and wrong placements appear due to limitations of a

bounding box. It can be avoided by implementing object-tight

bounding boxes or switching to triangle-based collision

detection. Unfortunately, this would increase computation

time. [9]

Fig-14: (a) Bounding Box (b) Minimum Bounding Box

5.5.3. Positioning

Although the positioning system is stable, misplacements of

objects may still occur. This can be solved by developing a

method that automatically adjusts the position of each object

by traversing the graph backwards. At this point, a user can

solve this problem by iterating the scene once again or by

manually repositioning the objects. Using a physics engine for

solving this problem thereby maintaining the physical

properties of rigid body.

Consider the example:

The vase is on the table. The ball is on the table. The candle is

on the table. The box is on the table.

Fig-14: (a) Wrong placement (b) Misplaced objects falling on

the ground due to the underlying physics engine

5.5.4: Updated database and system

In the previous case, the surface of the table fell short to

accommodate all the objects without collision resolution

among them and repositioning the box on the ground couldn’t

do perfect justice to the input text. In such a scenario, a table

with a larger surface area that could accommodate all the

objects would make more sense, for that the database should

be quite larger as compared to the existing one and the system

should be intelligent enough to import the appropriate version

of the object or the objects could be scaled in real life as per

the need.

(a) (b)

Fig-15: (a)Incorrect placement (b) Correct placement due to

new version of table imported

6. Conclusion

I believe that the system represents a unique approach to

creating scenes and images. It enables a user to quickly

generate virtual environments by using natural language as

input. The system will be an asset in many cases, providing

interesting and surprising interpretations, and when users want

to control a depiction more precisely, they can adjust their

language to better specify the exact meaning and graphical

constraints they envision. I believe that the low overhead of

language-based scene generation systems will provide a

natural and appealing way for everyday users to create 3D

scenes and express themselves. In its current state, the system

is only at its first step toward the goal. There are many areas

where the capabilities of the system need to be improved, such

as: Improvements in the coverage and robustness of the natural

language processing, language input via automatic speech

recognition rather than text; a larger inventory of objects,

poses, atomic rules, and states of objects; mechanisms for

depicting materials and textures; mechanisms for modifying

geometric and surface properties of object parts; environments,

INTERNATIONAL JOURNAL FOR RESEARCH IN EMERGING SCIENCE AND TECHNOLOGY, VOLUME-5, ISSUE-6, JUN-2018 E-ISSN: 2349-7610

VOLUME-5, ISSUE-6, JUN-2018 COPYRIGHT © 2018 IJREST, ALL RIGHT RESERVED 23

activities, and common knowledge about them; shape

deformation and natural phenomena.

7. References

[1] B. Foundation, "blender.org", blender.org, 2016. [Online].

Available: https://www.blender.org/. [Accessed: 02- Aug-

2016].

[2] "SHRDLU", Hci.stanford.edu, 2016. [Online]. Available:

http://hci.stanford.edu/winograd/shrdlu/. [Accessed: 2- Aug-

2016].

[3] "WordsEye", Wordseye.com, 2016. [Online]. Available:

http://www.wordseye.com/. [Accessed: 25- Aug- 2016].

[4] B. Coyne and R. Sproat, "Wordseye",

www.cs.columbia.edu, 2016. [Online]. Available:

http://www.cs.columbia.edu/~coyne/images/wordseye_siggrap

h.pdf. [Accessed: 07- Sept- 2016].

[5] A. Chang, W. Monroe and M. Savva, "Text to 3D Scene

Generation with Rich Lexical Grounding", nlp.stanford.edu,

2016. [Online]. Available: https://nlp.stanford.edu/pubs/chang-

acl2015-lexground.pdf. [Accessed: 27- Sept- 2016].

[6] A. Chang, M. Savva and C. Manning, " Semantic Parsing

for Text to 3D Scene Generation", nlp.stanford.edu, 2016.

[Online]. Available: https://nlp.stanford.edu/pubs/scenegen-

sp2014.pdf. [Accessed: 27- Sept- 2016].

[7] "The Stanford Natural Language Processing Group",

Nlp.stanford.edu, 2016. [Online]. Available:

http://Nlp.stanford.edu. [Accessed: 15- Oct- 2016].

[8] "Stanford CoreNLP – Core natural language software |

Stanford CoreNLP", Stanfordnlp.github.io, 2016. [Online].

Available: https://stanfordnlp.github.io/CoreNLP/. [Accessed:

18- Oct- 2016].

[9] "Minimum bounding box algorithms", En.wikipedia.org,

2016. [Online]. Available:

https://en.wikipedia.org/wiki/Minimum_bounding_box_algorit

hms. [Accessed: 5- Sept- 2016].

