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ABSTRACT 

Translating elusive ideas or statements into visual scenes is quite a daunting task. First the thought has to be laid out explicitly and 

clearly in the form of a written statement which acts as the foundation for the conversion. Then a professional strives to create a 

mental image of the given statement. Finally, another professional starts placing models according to the abstract image created in 

the previous stage in a model rendering software. Thus, converting a single text to corresponding visual element is a rather 

challenging task. This paper will focus on automating this entire transformation. It promises to convert any arbitrary descriptive 

text into a representative scene. The proposed system parses a user written input text, extracts information using Natural Language 

Processing (NLP) and tags relevant units. It then associates every object with model and places them according to the derived 

relations and spatial dependencies. Ultimately the user can make changes and minor adjustments to the final scene using 

Blender[1] in-build controls. 

 

Index Term— Text, scene, NLP, dependency, parser, supporter, dependent, preposition, bounding box, 3d models, refinement, 

POS tags, heuristics, collision. 

 

1. INTRODUCTION 

Natural language is an easy and effective medium for 

describing visual ideas and mental images. It is a tool that 

allows people to describe visual scenes in a straightforward 

manner. Automatic generation of scene by using text 

descriptions as input offers an efficient approach to human 

computer interaction with graphics and could speed up the 

whole generating process. It also makes graphics more 

accessible to users in non-graphics domains. Thus, foreseeing 

the emergence of language-based scene generation systems to 

let ordinary users quickly create scenes without having to learn 

special software, acquire artistic skills, or even touch a desktop 

window-oriented interface. 

 

The paper explains the existing solutions, implementation of 

the proposed system in detail, its limitations and future work. 

 

2. Existing Solution 

Already quite a few projects investigated the field of natural 

language input for creating virtual environments. 

 

2.1. SHRDLU program 

The SHRDLU program was one of the earliest systems that 

were able to understand and evaluate natural language. User 

interaction was allowed via simple English dialogs about a 

small blocks world shown on an early display screen. [2] 
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Fig-1: SHRDLU program 

 

2.2. Wordseye 

One of the most well-known projects in the field of language-

based 3D scene generation is WordsEye, created by B. Coyne 

and R. Sproat. [3] It generates static scenes out of a user-given 

text. An entered text consists of simple sentences that describe 

positions of objects and their orientations, colors, textures, and 

sizes. [4] 

 

 

Fig-2: Wordseye 

 

2.3. Text to Scene Generation 

The Text to Scene Generation project aims to explore how to 

automatically generate 3D scenes from a natural text 

description. [5] When describing a scene, people will often 

omit important common-sense knowledge about the placement 

of objects. For instance, it is uncommon for people to state that 

chairs are usually on the floor and upright, and that you eat a 

cake from a plate on a table. This project attempts to learn 

such knowledge from a dataset. [6] 

 

 

Fig-3: Text to scene generation [7] 

 

Most previous work paid more attention to the language 

engine, but less attention to the graphics engine which was just 

designed to present scene with poor visual effects. 

 

3. Implementation Details 

The technical execution of the system has been divided into 3 

main phases namely, 

Phase 1: Information extraction and refinement 

Phase 2: Creation of directed graph 

Phase 3: Rendering virtual environment 

Each phase has been further subdivided into further small 

steps as follows. 

 

3.3.  Phase I  

This phase consists of extracting information which will be 

needed for the smooth execution of later stages. Extracted 

information belonging to the same data type are later saved in 

similar data structures for future reference. 

 

3.1.1. Part of Speech Tagging 

The input sentence is then divided into tokens i.e., the sentence 

is divided into atomic units(words) and all the words as tagged 

and classified according to their type (nouns, pronouns, 

determiner, adverbs, etc.). The technology used for tokenizing 

the input descriptive text is Stanford Tagger from Stanford 

CoreNLP package. [8]‖. 

 

3.1.2. Extracting Dependencies 

A dependency parser analyzes the grammatical structure of a 

sentence, establishing relationships between "head" words and 

words which modify those heads. The figure below shows a 

dependency parse of a short sentence. The arrow from the 

word moving to the word faster indicates that faster modifies 

moving, and the label advmod assigned to the arrow describes 

the exact nature of the dependency. 
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Fig-4: Dependency parser 

 

The parser provides Universal Dependencies as well as phrase 

structure trees. Typed dependencies are otherwise known 

grammatical relations. 

 

3.1.3. Spatial Prepositions 

Prepositions that indicate a spatial relationship explain where 

one object is in relation to another. Prepositions are grouped 

according to their meaning. 

 

 

 

Table-1: Grouped Prepositions 

 

3.1.4.  Refinement 

This step consists of fetching the core elements needed by the 

system for creation of a 3D scene. Supporters, dependents and 

prepositions are extracted from the sentences using the 

dependencies and POS tags which are then saved in a text file 

for creation of directed graph. 

 

3.2. Phase II 

This directed graph is used for determining the relationships 

between objects. In this system, the nodes represent various 

objects and the links between them represent their 

dependency. There are 6 rules for creation of directed graph. 

 

Algorithm for creation of directed graph 

INPUT: Supporters, Dependents, Dependencies, Prepositions. 

OUTPUT: Directed Acyclic Graph. 

 

3.2.1. Rule 1 

New object is added 

If (object node does not exist) 

    Create new dependent or supporter node and link it using 

the preposition. 

 

 

Fig-5: Rule 1 

 

3.2.2. Rule 2 

A supporter may serve for various dependents and therefore  

If (supporter is not present) 

    Then add new object node and link it using preposition. 

or else  

    Abort to avoid repetition. 

 

 

 

Fig-6: Rule 2 

 

3.2.3. Rule 3 

Dependents may depend on different supporters and therefore  

If (dependent is not present) 

    Then add new object node and link it using preposition. 

or else  

    Abort to avoid repetition. 

 

 

 

Fig-6: Rule 3 

 

3.2.4. Rule 4 

Supporter POSI qualifies to be a dependent POSI 

If (supporter POSI acts as a dependent POSI) 

    Link supporter POSI now acting as dependent to its 

supporters. 
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Fig-7: Rule 4 

 

3.3.5. Rule 5 

Dependent POSI qualifies to be a supporter POSI 

If (dependent POSI acts as a supporter POSI) 

    Link dependent POSI now acting as supporter to its 

dependents. 

 

 

 

Fig-8: Rule 5 

 

3.2.6. Rule 6 

A cycle is detected in the directed graph 

If (a cycle is formed)  

    Create another dependent node as the new child of the 

parent node. 

 

 

 

Fig-9: Rule 6 

 

3.3. Phase III 

This phase concentrates on importing the object models and 

placing them onto the rendering platform like Blender in a 

way which is dictated by the information extracted from the 

initial phases. Wordnet is used to pick the correct model from 

the database and bounding box coordinates are used to avoid 

collisions between neighboring objects. 

 

3.3.1. Algorithm for importing and placing object 

according to spatial preposition 

Input: 3D models. 

Output: 3D scene as per input descriptive text. 

 

If (spatial preposition == ―on‖) 

    Place new model just above the max height of the previous 

model. 

If (spatial preposition == ―under‖) 

    Place new model below the base of the previous model. 

If (spatial preposition == ―above‖) 

    Place above max height with randomly generated offset. 

If (spatial preposition == ―near‖) 

    Place new model in any one of the four randomly chosen 

directions. 

If (spatial prepositions == ―away‖) 

    Same as near but with a comparatively large offset. 

If (spatial preposition == ―inside‖) 

    Place new model inside the previous (hollow) model. 

If (spatial preposition == ―outside‖) 

    Place the new model just outside the previous model. 

If (spatial preposition == ―ahead‖) 

    Place the new model to the north of the previous model. 

If (spatial preposition == ―behind‖) 

    Place the model to the south of the previous model. 
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Fig-10: Spatial preposition interpretation 

 

3.3.2. Bounding box coordinates, collision detection and 

resolution 

It is used to determine the boundaries of the object so that it 

can be used to detect collisions. Once collision is detected. 

The current object is moved in a particular direction (using 

randomizer) point by point until the collision is resolved. 

 

 

 

Fig-11: Bounding Box 

 

 

(a)                                                 (b) 

 

Fig-12: (a) Collision detection (b) Collision resolution 

 

4. Limitations 

A. The objects in a single sentence are in the form of 

supporter-dependent pairs. and linked using a preposition. 

B. Each sentence has to be formed using the listed objects and 

preposition. 

C. Each sentence should consist a maximum of one supporter 

and two dependents only. 

D. The objects in the sentences should share some relationship 

between each other. 

E. The system does not respond to verbs, adjectives, adverbs, 

colors, size or quantity. 

F. Use of conjunctions is allowed. 

G. System cannot recognize named entities. 

H. As the complexity of the scene increases, the chances of 

collision rise. 

 

 

5. Future Work 

More can be contributed by creating a more realistic scene by 

incorporating heuristics making the bounding box more 

efficient. 

 

5.1. Naturalness 

The system would improve the appearance of a created 3D 

scene by applying the following two positioning heuristics. 

 

5.1.1. Distance Heuristic 

The first heuristic is used to ensure that any two objects are not 

placed too close or far away from each other. 

 

5.1.2. Rotation Heuristics 

This heuristic applies a little random rotation to all of the 

occurring objects within a scene in order to achieve an 

―untidy‖ appearance. 

 

Consider the example: 

The ball is on the table. The box is to the left of the table. The 

dustbin is in front of the table. The bird is above the ball. The 

chair is to the right of the table. 
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Fig-13: Imparting naturalness to scene 

 

5.5.2. Minimum Bounding Box 

Collision and wrong placements appear due to limitations of a 

bounding box. It can be avoided by implementing object-tight 

bounding boxes or switching to triangle-based collision 

detection. Unfortunately, this would increase computation 

time. [9] 

 

 

 

Fig-14: (a) Bounding Box (b) Minimum Bounding Box 

 

5.5.3. Positioning 

Although the positioning system is stable, misplacements of 

objects may still occur. This can be solved by developing a 

method that automatically adjusts the position of each object 

by traversing the graph backwards. At this point, a user can 

solve this problem by iterating the scene once again or by 

manually repositioning the objects. Using a physics engine for 

solving this problem thereby maintaining the physical 

properties of rigid body. 

Consider the example: 

The vase is on the table. The ball is on the table. The candle is 

on the table. The box is on the table. 

 

 

Fig-14: (a) Wrong placement (b) Misplaced objects falling on 

the ground due to the underlying physics engine 

 

5.5.4: Updated database and system 

In the previous case, the surface of the table fell short to 

accommodate all the objects without collision resolution 

among them and repositioning the box on the ground couldn’t 

do perfect justice to the input text. In such a scenario, a table 

with a larger surface area that could accommodate all the 

objects would make more sense, for that the database should 

be quite larger as compared to the existing one and the system 

should be intelligent enough to import the appropriate version 

of the object or the objects could be scaled in real life as per 

the need. 

 

 

(a)                                   (b) 

 

Fig-15: (a)Incorrect placement (b) Correct placement due to 

new version of table imported 

 

6. Conclusion 

I believe that the system represents a unique approach to 

creating scenes and images. It enables a user to quickly 

generate virtual environments by using natural language as 

input. The system will be an asset in many cases, providing 

interesting and surprising interpretations, and when users want 

to control a depiction more precisely, they can adjust their 

language to better specify the exact meaning and graphical 

constraints they envision. I believe that the low overhead of 

language-based scene generation systems will provide a 

natural and appealing way for everyday users to create 3D 

scenes and express themselves. In its current state, the system 

is only at its first step toward the goal. There are many areas 

where the capabilities of the system need to be improved, such 

as: Improvements in the coverage and robustness of the natural 

language processing, language input via automatic speech 

recognition rather than text; a larger inventory of objects, 

poses, atomic rules, and states of objects; mechanisms for 

depicting materials and textures; mechanisms for modifying 

geometric and surface properties of object parts; environments, 
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activities, and common knowledge about them; shape 

deformation and natural phenomena. 
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