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    ABSTRACT 

Automated question paper generation has emerged as a prominent field in educational settings, driven by advancements in artificial 

intelligence and machine learning. This research paper presents a comprehensive approach that harnesses advanced language models 

and machine learning techniques to generate question papers with diverse difficulty levels and types. The methodology encompasses 

several key steps. To begin, we employ the pandas and os libraries in Python for data preparation. Pandas, a versatile tool for data 

manipulation and analysis, facilitates the creation of a structured DataFrame from questions and labels extracted from text files. The 

os module, on the other hand, aids in managing files and directories, enabling efficient iteration over files and content retrieval. Data 

cleaning is crucial, and we accomplish it by employing regular expressions with the re module. This step sanitizes the input question 

text, removing unwanted characters and ensuring a cleaner and more uniform dataset. Next, we train machine learning models using 

the popular sklearn library. The dataset is split into training and testing sets using the sklearn.model_selection.train_test_split 

function, allowing us to train the models on the larger training set and evaluate their performance on the testing set. To transform the 

textual data into a format suitable for machine learning models, we utilize the sklearn.feature_extraction.text.CountVectorizer. This 

process, known as vectorization, converts the text into a matrix of token counts, facilitating subsequent analysis. For the classification 

task, we adopt the sklearn.naive_bayes.MultinomialNB algorithm, renowned for its efficacy in text classification. This algorithm is 

trained using the feature matrix from the CountVectorizer and the corresponding labels. Evaluation of the models' performance is 

achieved through the sklearn.metrics.accuracy_score function, which compares the predicted labels with the actual labels from the 

testing set. To facilitate future use without retraining, the trained models, along with the CountVectorizer, are saved using the joblib 

library. In the question classification and storage stage, new questions are classified using the trained models and stored in separate 

files. These questions are imported from text files, cleaned using the aforementioned data cleaning techniques, and then vectorized. 

The trained models are utilized to classify the questions, and the results are saved in separate text files based on the predicted labels. 

This organization enables efficient retrieval of questions according to their classification, simplifying the generation of specific 

question paper types. Moreover, we fine-tune the GPT-2 model using the Transformers library, a powerful language model. This fine-

tuning process occurs on classified question datasets, enabling the generation of unique and contextually relevant questions. 

Additionally, we utilize BERT, a highly effective model in Natural Language Processing (NLP), for text classification. A pre-trained 

BERT model is fine-tuned specifically for sequence classification, enabling the categorization of questions based on their relevance. 

To enhance the quality of the generated questions, we incorporate a question filter script that assesses relevance and grammatical 

correctness. This script identifies and eliminates irrelevant or grammatically incorrect questions, thus improving the overall quality of 

the generated question set. To create well-structured question papers, we employ multiple pre-trained models capable of generating 

questions categorized by cognitive domains (such as knowledge, comprehension, application, analysis, synthesis, and evaluation) and 
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section types (including very short, short, and long). This approach ensures a balanced representation of different question types and 

difficulty levels in the generated question papers. Finally, we employ the convert_to_pdf function, utilizing the reportlab library, to 

convert the generated question paper into a PDF format. This conversion process simplifies dissemination and sharing of the question 

paper output. The evaluation of our model yields promising results, with an overall accuracy of approximately 74.2% in predicting 

Bloom's taxonomy categories. Notably, the model demonstrates strengths in predicting 'comprehension' and 'evaluation'. Additionally, 

the question type classification model exhibits high accuracy in identifying 'not relevant' questions, a crucial aspect for maintaining 

question paper quality. However, further improvements are required in distinguishing between 'long,' 'short,' and 'very short ' 

questions. Furthermore, aligning the generated questions with the class 10 science course syllabus is a priority for future work, as the 

current limitations in the dataset hindered full alignment. This research contributes significantly to the advancement of automated 

question paper generation systems. It highlights the importance of leveraging advanced language models, machine learning 

algorithms, and effective data preprocessing techniques. The findings provide valuable insights into the strengths and areas for 

improvement in our proposed methodology, laying the foundation for further research to refine and enhance these systems. 

 

Keywords: . Automated Question Paper Generation; Machine Learning and Artificial Intelligence; Natural Language Processing 

(NLP); Python Libraries (sklearn, pandas, Transformers); Pre-trained Models (GPT-2, BERT); Text Classification and Vectorization 

 

1. INTRODUCTION 

The rapidly evolving era of Artificial Intelligence (AI) and 

Machine Learning (ML) algorithms opens up a myriad of 

opportunities to revolutionize numerous aspects of our lives, one 

of which is the field of education (Bishop, 2006). Traditionally, 

question paper generation has been a manual and time-

consuming process, often resulting in question papers that do not 

optimally align with the varying learning needs and abilities of 

students. Recognizing this gap, this research aims to introduce an 

intelligent question paper generation system using AI and ML 

algorithms, tailored to create diverse difficulty levels, thereby 

catering to the unique learning requirements of every student. 

The context of this research is established amidst the current 

educational landscape where standardized assessments often fail 

to accurately measure a student's understanding or aptitude (4). 

By integrating AI and ML algorithms into the process of 

question paper generation, the objective is to create a more 

dynamic, personalized, and effective evaluation method (1). The 

purpose is not only to improve the efficiency of the process but 

also to augment the quality of education and assessments. 

The problem being addressed here is the largely uniform and 

standardized nature of assessment papers that often neglect the 

unique learning pace and understanding level of each student. 

The outcome can potentially lead to skewed academic results and 

may not foster inclusive learning. This research aspires to 

provide a tailored solution to this issue, presenting a unique and 

personalized approach to assessments. With the advent of 

sophisticated machine learning models such as the Multinomial 

Naive Bayes algorithm (1), GPT-2 (2), and BERT (3), among 

others, the feasibility and applicability of AI in creating 

personalized question papers has significantly increased. The 

proposed system leverages these state-of-the-art ML algorithms 

to classify, generate, and evaluate questions based on specific 

parameters such as relevance and grammatical correctness, thus 

providing a tailored question paper for each student. 

The study's primary goal is to design, implement, and evaluate an 

AI-based question paper generation system capable of generating 

diverse difficulty levels and ensuring the relevance and 

grammatical correctness of questions (3). To achieve this, 

various ML algorithms are employed, including, but not limited 

to, the Multinomial Naive Bayes algorithm for classification (1), 

GPT-2 for question generation (2), and BERT for relevance 

assessment (3). The research also explores the integration of 

various Python libraries such as Pandas, os, and re for data 

manipulation, cleaning, and file management, respectively (4). 

The research's significance is two-fold. Academically, it 

contributes to the emerging field of AI in education by 

presenting a practical and scalable solution for tailored question 

paper generation. Practically, it offers a potential tool that can 

revolutionize the way we approach assessments, fostering a more 

inclusive, personalized, and effective learning environment. 

The research will primarily involve developing and testing 

multiple ML models to carry out specific tasks, including data 

preprocessing, model training and evaluation, question 

classification and storage, and eventually question generation. 

The system will use different ML models for different tasks, 
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working in an integrated manner to achieve the desired output 

(40). 

In summary, this research proposes to leverage AI and ML 

algorithms to create an intelligent question paper generation 

system, marking a significant step towards personalized and 

effective education. By doing so, it attempts to address the need 

for a more inclusive, comprehensive, and tailored approach to 

assessments, ultimately contributing to improved teaching and 

learning outcomes. 

2. REVIEW 

This meta-analytic review endeavors to examine key 

developments in the field of machine learning, natural language 

processing (NLP), and educational taxonomies, with a specific 

focus on their application to pattern recognition, language 

modeling, and automated question generation. 

As per (1),  set the foundation for pattern recognition and 

machine learning, exploring different techniques, mathematical 

frameworks, and potential applications. This work forms the 

basis for many subsequent advancements in machine learning 

(1). The role of machine learning is further complemented by 

scikit-learn, a powerful library providing efficient tools for 

statistical modeling, including classification, regression, 

clustering, and dimensionality reduction (7 and 8). 

In the domain of NLP, advancements have been led by 

transformer-based models. Transformer architectures have 

revolutionized NLP tasks by focusing on self-attention 

mechanisms that better understand the context within sequences 

of words. In (3) introduced BERT (Bidirectional Encoder 

Representations from Transformers), a pre-training model that 

has significantly improved the state-of-the-art across a broad 

array of tasks. OpenAI's GPT-2 (2) and GPT-3 (5) built upon this 

work and demonstrated the versatility of these models in an 

unsupervised setting. These models can generate coherent, 

contextually relevant, and grammatically correct sentences. The 

capabilities of these models were extensively studied by (4), 

outlining their potential in a range of tasks. 

The educational field has been enriched by Bloom's Taxonomy, 

which categorizes cognitive skills into six levels: knowledge, 

comprehension, application, analysis, synthesis, and evaluation 

(5). This taxonomy offers a blueprint for structuring 

educationally relevant questions at varying difficulty levels. 

On the computation front, PyTorch has become a preferred tool 

for researchers due to its flexibility and efficiency (10). This is 

further supplemented by Adam, an optimization algorithm that 

has been widely adopted for its efficiency in dealing with large-

scale problems (13). In (11), extended Adam with decoupled 

weight decay regularization to improve the algorithm's 

performance further. 

Accuracy estimation and model selection have been studied by 

(14) who proposed cross-validation and bootstrap methods. 

These techniques are crucial for verifying the effectiveness and 

generalization capability of the models. 

In (16), proposed a rule-based grammar checker, a vital tool for 

ensuring the grammatical correctness of generated content. 

Similarly, in (17), has provided Python users with a library for 

PDF processing, enabling the output of generated content in a 

readily accessible format. 

In conclusion, the field of automated question generation has 

significantly benefited from advancements in machine learning, 

NLP, and education research. The intersection of these 

disciplines allows for the creation of sophisticated models 

capable of generating, evaluating, and sorting questions based on 

their relevance, complexity, and grammatical correctness. 

 

  3. METHODS 

Model 1 

This research involves an automated question paper generator, 

implemented using various Python libraries(Pedregosa et al., 

2011). The main steps of the methodology are data preparation, 

model training, model saving, question classification, and storage 

of classified questions. 

 

Data Preparation: The initial phase of the project involves 

preparing the data for model training. For this, the Python 

libraries pandas (McKinney, 2010) and os are used. 

 

Pandas: The Pandas library is a powerful tool used for data 

manipulation and analysis in Python. Here, it is employed to 

create a DataFrame from the questions and labels read from text 

files. A DataFrame is a two-dimensional labeled data structure 

where columns can potentially be of different types. The data is 

organized in a tabular form that is easy to manipulate and 

analyze, ideal for our machine learning model. 

 

OS: The os module in Python is used for interacting with the 

operating system. Here, it is primarily used for managing files 

and directories. Specifically, it enables the code to iterate over all 
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files in the provided directories, read the content of each file, and 

create new directories for storing classified questions. 

Data cleaning is performed using the function clean_question, 

defined using Python's re module. 

RE: The re module in Python provides support for regular 

expressions, enabling us to manipulate strings using various rules 

and patterns. In the clean_question function, it is used to sanitize 

the input question text, removing unwanted characters and 

helping in making the dataset cleaner and more uniform. 

 

Model Training: This research utilizes two machine learning 

models for classifying the questions. They are trained using the 

create_model function which uses several components from the 

sklearn library (Pedregosa et al., 2011). 

 

sklearn.model_selection.train_test_split: This function is used 

to split the dataset into two parts: a training set and a testing set. 

The training set is larger and used to train the model. The testing 

set is used to evaluate the model's performance. 

 

sklearn.feature_extraction.text.CountVectorizer: 

CountVectorizer is used to convert the text data into a matrix of 

token counts. This process, known as vectorization, is a crucial 

step in preprocessing for Natural Language Processing (NLP). It 

transforms textual data into a format that can be processed by the 

machine learning model. 

 

sklearn.naive_bayes.MultinomialNB: The Multinomial Naive 

Bayes algorithm from sklearn's naive_bayes module is used as 

the machine learning model in this project. It is a popular choice 

for text classification tasks. The algorithm is trained using the 

feature matrix from the CountVectorizer and the corresponding 

labels. It uses the principles of Bayes' Theorem but with strong 

independence assumptions. 

 

Model Evaluation: Model performance is gauged using 

sklearn's accuracy_score function (Pedregosa et al., 2011). 

 

sklearn.metrics.accuracy_score: After the model has been 

trained and has made predictions on the testing set, 

accuracy_score is used to compute the accuracy of those 

predictions. This is done by comparing the predicted labels with 

the actual labels from the testing set. 

 

Model Saving: Once the models are trained, they are saved to 

disk along with the CountVectorizer using the joblib library. 

 joblib: Joblib is a Python library used for saving and loading 

Python objects that involve large data arrays. Here, it is used to 

serialize the trained models and the vectorizer, saving them to 

the disk. This allows the models to be reused later without 

retraining. 

 

Question Classification and Storage: 

Finally, new questions are classified using the trained models. 

The questions are imported from a text file, cleaned using the 

clean_question function, vectorized, and then passed through the 

models for classification. The classified questions are then saved 

in separate text files named after the predicted labels from both 

models, facilitating efficient retrieval for specific types of 

question papers. 

 

Working: This research presents a three-fold methodology for 

an automated question paper generator, integrating training of 

classifiers, classification of datasets, and management of 

classified data. 

 

1. Training of Classifiers: 

In the initial phase, two distinct text classification models are 

trained. The training datasets comprise two types: one based on 

the length of the questions (very short, short, long) and the other 

based on Bloom's taxonomy (knowledge, comprehension, 

application, analysis, synthesis, evaluation) (5). 

The first model is trained to identify the cognitive level of the 

question based on Bloom's taxonomy. Bloom's taxonomy 

provides a framework that categorizes educational learning 

objectives into levels of complexity and mastery (5). By training 

a model on this taxonomy, the system can identify whether a 

given question tests knowledge, comprehension, application, 

analysis, synthesis, or evaluation. 

The second model is trained to identify the length of the 

question. It discerns whether the question is very short, short, or 

long. This classification is valuable for constructing a balanced 

and well-distributed question paper. 

The models are trained using a dataset that pairs questions with 

their corresponding classifications. The sklearn's train_test_split 

function is used to split the dataset into training and testing sets. 

The questions are then vectorized using the CountVectorizer 

function, transforming the text data into a format that can be 
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processed by the machine learning models. These vectorized 

questions form the basis for training the Multinomial Naive 

Bayes Classifier (MultinomialNB), a popular choice for text 

classification tasks (9). 

 

2. Classification of Datasets: 

Once the models are trained, they are used to classify all 

questions in the datasets. Each question is processed through 

both models, resulting in a dual classification. For instance, a 

question might be classified as 'short' in terms of length and 

'evaluation' in terms of Bloom's taxonomy. The system would 

then label this question as 'short-evaluation'. This two-fold 

classification system enables a rich, multi-dimensional 

organization of the questions. 

Additionally, the models are capable of classifying a set of 

unclassified questions provided in a separate text file. This 

feature, however, is optional and is used based on the 

requirements of the user. 

 

3. Management of Classified Data: 

Following classification, the system stores the questions in an 

organized manner. For each unique classification label, a 

separate directory is created (if it doesn't already exist). Each 

question is then saved in its corresponding directory, denoted by 

its predicted label. 

For example, if an unclassified question gets classified as 'short-

knowledge', it is added to the 'short-knowledge' directory. This 

automated system not only categorizes questions but also 

provides an efficient retrieval mechanism, aiding in the speedy 

compilation of specific types of question papers.  

The trained models, along with the vectorizer, are saved using 

joblib to allow future reuse without retraining. This method 

promotes system efficiency and offers the flexibility to process 

new, unclassified questions at any time. 

 

Image 1: Initial system layout with 'qu' and 'bloom' folders 

containing text files named for question lengths and Bloom's 

taxonomy categories, respectively, before code execution. 

 

 

Image 2 and 3: Post-classification system structure showcasing 

original 'bloom' and 'qu' folders, alongside a new 'classified' 

folder. The latter contains files named for question length and 

Bloom's category combinations, such as 'short-knowledge.txt', 

illustrating the system's dual categorization for efficient question 

retrieval. 

Model 2 

The objective of this method is to fine-tune the GPT-2 model, a 

large transformer-based language model, on classified question 

datasets for the generation of unique questions (2). This process 

utilizes the Transformers library developed by Hugging Face (4). 

The fine-tuning operation unfolds in the following steps: 

 

1. Installation and Importation of Libraries: Initially, the 

transformers and accelerate libraries are installed using pip, 

Python's package installer. The transformers library, by Hugging 

Face, provides pre-trained models that facilitate various tasks in 
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Natural Language Processing (NLP) (4). In this research, it is 

used for fine-tuning the GPT-2 model. 

The accelerate library, also developed by Hugging Face, is a 

PyTorch utility designed for easy multi-GPU and distributed 

training. The inclusion of this library is intended to optimize the 

process of model fine-tuning, ensuring efficient utilization of 

available computational resources. 

Following installation, the necessary classes and methods from 

the transformers library are imported. These components are 

crucial for the tokenization process, model handling, trainer 

specification, training argument formation, and data collation. 

 

2. Tokenization: An instance of AutoTokenizer is created using 

the pre-trained GPT-2 large model (4). Tokenization involves 

breaking down sentences into smaller units—words, subwords, 

or symbols—so they can be processed by the model. The 

tokenizer converts the text data into a format understandable by 

the model, transforming input text into an array of integers 

representing the underlying semantic content. 

 

3. Dataset Loading: A load_dataset function is defined to return 

a TextDataset object, which is a PyTorch Dataset. This object 

contains the tokenized text data from a specified file, prepared 

for training. The TextDataset class from the transformers library 

reads a text file and converts it into a suitable dataset for training 

the transformer model. 

 

4. Data Collation: A DataCollatorForLanguageModeling is 

defined, a specific collator for language modeling tasks. It is a 

function that batches examples from the dataset and prepares 

them for training or evaluation. It helps mask tokens for a 

masked language modeling objective, which is a common 

training method for transformer models. 

 

5. Path Gathering: All text file paths from the classified folder 

are collated into dataset_paths, ensuring that each file of 

classified questions is identified and included in the fine-tuning 

process. 

 

6. Model Fine-Tuning: The crux of the operation is the fine-

tuning of the GPT-2 model. For each file in dataset_paths, a new 

instance of the GPT-2 large model is created. The corresponding 

dataset is loaded, and training arguments are defined using the 

TrainingArguments class. This class specifies training 

parameters such as the output directory, number of training 

epochs, and batch size. 

The Trainer class creates a training loop for PyTorch, optimized 

for transformers. It utilizes the model, training arguments, data 

collator, and dataset to fine-tune the model. Consequently, each 

model is fine-tuned on a particular dataset, allowing the model to 

generate questions specific to its category. 

7. Model Saving: After fine-tuning, the configuration of the 

model and the model itself are saved for future use. These saved 

models can generate unique questions corresponding to their 

training datasets, thereby enhancing the variety and uniqueness 

of question papers (2). 

In summary, this methodology leverages the GPT-2 model's 

power to generate unique, category-specific questions. It presents 

a robust technique for question paper generation, thereby 

enabling a diverse and dynamic examination landscape. 

Working: The principal goal of this phase in the methodology is 

the fine-tuning of the GPT-2 large model on the various 

classified datasets created in the preceding step. This fine-tuning 

procedure is designed to equip the GPT-2 model with the 

capability to generate unique questions pertaining to each 

category established during classification, including but not 

limited to classifications such as short-evaluation, long-analysis, 

and very short-knowledge. The results of this fine-tuning process 

are subsequently stored for future usage and retrieval. 

 

Fine-Tuning the GPT-2 Model: 

To commence the fine-tuning process, the GPT-2 model is 

instantiated for each category in the classified datasets. Each 

model instance is fine-tuned on the classified datasets, which 

have been prepared according to categories based on Bloom's 

taxonomy and question type (very short, short, long). 

The fine-tuning process essentially consists of training the model 

on a new task using the pre-existing model weights. This method 

allows the model to apply its pre-trained knowledge to the new 

task, reducing the required training time and data. In this case, 

the GPT-2 model, which is pre-trained on a large corpus of 

internet text, is fine-tuned on the specific task of generating 

unique questions for each category. 

Fine-tuning is carried out using the Trainer class from the 

Hugging Face's transformers library. The Trainer class handles 

training and evaluation of the model. It utilizes the model, 

training arguments, data collator, and the classified datasets to 

fine-tune each model. This process equips each model to 
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generate unique questions, consistent with the specifics of their 

respective category. 

 

Storing Fine-Tuned Models: 

Upon completion of the fine-tuning operation, each model, now 

specifically trained for generating questions from a distinct 

category, is stored for future use. The configuration of the model 

and the model itself are saved using the save_model() function. 

The results are stored in a designated directory, './results'. Each 

category gets its own sub-directory within this folder, matching 

the respective categories, for example, ./results/short-evaluation, 

./results/long-analysis, ./results/very short-knowledge, and so 

forth. 

In essence, this methodology equips the GPT-2 model to 

generate category-specific unique questions. The fine-tuning 

process enables a granular approach to question generation, thus 

providing the capacity to generate a wide variety of questions 

aligned with specific pedagogical objectives. This fine-tuned 

GPT-2 model thereby adds dynamism and depth to the landscape 

of automated question paper generation. 

 

 

Image 4: Initial system state before GPT-2 model fine-tuning, 

indicated by the absence of the 'results' folder for storing fine-

tuned models. 

 

 

Image 5 and 6: Transformed system state after GPT-2 model 

fine-tuning, signified by the 'results' folder containing category-

specific sub-directories, each housing a fine-tuned model for 

generating questions in the corresponding category, thereby 

improving automated question generation. 

Model 3 

Methods 

The purpose of this step in our methodology is to prepare a text 

dataset for a classification task. This task's objective is to discern 

the relevance of a question, separating questions into relevant 

and non-relevant categories. The employed model for this step is 

BERT (Bidirectional Encoder Representations from 

Transformers), known for its effectiveness in numerous Natural 

Language Processing tasks, including text classification (3). 

 

Preparing the Dataset: 

Data is loaded using the defined function load_data. The function 

reads a text file, and each line is subjected to formatting for 

uniformity; all leading and trailing white spaces are stripped, and 

the text is converted to lower case. Each line (question) is then 

assigned a label to signify its relevance. Relevant and non-

relevant data are subsequently loaded, combined into a single 

dataset, and shuffled for unbiased model training. 

The dataset's cleaning process follows next, where all 

punctuation marks are removed from the questions using the 

clean_question function, enhancing the efficiency of the 

subsequent tokenization step. 

 

Tokenizing and Conversion to PyTorch Tensors: 

Tokenization for this task utilizes BERT's tokenizer, instantiated 

as BertTokenizerFast, using the pre-trained 'bert-base-uncased' 

model (4). The tokenizer is not only responsible for converting 

the text data into a model-friendly format, but also for creating 

attention masks that differentiate padding tokens from non-

padding tokens. 
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After tokenization, the resultant data and attention masks are 

converted into PyTorch tensors. The labels for relevance are also 

converted into tensor format, thus achieving compatibility with 

the PyTorch-based model. 

 

Data Splitting and DataLoader Creation: 

Once the tensors are prepared, the data is split into training and 

validation sets using the train_test_split function from 

sklearn.model_selection library (7). The split ratio employed is 

90:10, signifying that 90% of the data is used for training, and 

the remaining 10% is used for validation. 

To prepare the data for training and validation, DataLoader 

objects are created. For the training set, a RandomSampler is 

employed. The usage of random sampling helps in facilitating 

stochastic optimization. On the other hand, the validation set 

uses a SequentialSampler. 

In summary, this phase in the methodology is concerned with 

creating a well-organized pipeline for preparing a text 

classification dataset. This pipeline spans from raw text data to 

ready-to-use DataLoader objects, which are primed for model 

training. 

 

Significant Models and Libraries 

The methodology in question leverages several noteworthy 

models and libraries to accomplish the text classification task: 

 

xformers: This library, installed via the command !pip install 

xformers, houses an extensive collection of transformer models. 

These models are optimized for performance across diverse 

hardware and applications. 

 

language_tool_python: Installed via the command !pip install 

language_tool_python, this library is a Python wrapper for 

LanguageTool, facilitating grammar checking in Python. 

 

BertTokenizerFast: This class, part of the transformers library, 

is a fast tokenizer for the BERT model (4). It is crucial for the 

transformation of raw text data into a format ingestible by the 

model. 

 

PyTorch (torch): PyTorch is a renowned open-source machine 

learning library based on the Torch library (10). It is used to 

manipulate tensors, the core data structures in PyTorch, and 

perform various operations on them. 

 

Train_test_split & shuffle: These functions are part of the 

sklearn library (7). They are utilized to split datasets into training 

and validation subsets randomly and shuffle the data to ensure 

unbiased model training. 

 

TensorDataset, DataLoader, RandomSampler, 

SequentialSampler: These classes, part of PyTorch's 

torch.utils.data module, are used to wrap the dataset into 

PyTorch's tensor format, load the data in batches, and perform 

sampling for both training and validation datasets (10). 

 

The code combines the strengths of these models and libraries to 

load, clean, and tokenize the data. It then prepares the data for 

training a BERT model by converting it into PyTorch tensors and 

creating DataLoader objects. The results are ready-to-use 

DataLoader objects that can be directly used for training a 

model. 

 

Model 4 

The script under discussion represents a procedure for fine-

tuning a pre-trained BERT (Bidirectional Encoder 

Representations from Transformers) model for sequence 

classification, a task in Natural Language Processing (NLP) that 

involves assigning predefined categories to sequences of words 

or sentences (3). This is an important component of our 

automated question paper generation system, enabling it to 

categorize generated questions based on their relevance. 

To start, we import several essential libraries. This includes 

transformers, a popular NLP library that provides state-of-the-art 

pre-trained models and other NLP utilities (4), torch for handling 

tensor computations (10), and AdamW and BertConfig from the 

transformers library for model optimization and configuration 

(11). 

 We employ the BertForSequenceClassification model, a variant 

of the BERT model equipped with a classification layer on top. 

This model is ideal for tasks that involve classifying a sequence 

into one of two or more categories, a binary classification in our 

case. The model parameters are loaded using the 

.from_pretrained() function, which fetches the pre-trained model 

weights (4). 

Once the model is set, we initialize an AdamW optimizer. This is 

a variant of the Adam optimizer that corrects its weight decay 

handling, a crucial aspect of optimizing model performance 
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during the training process. The learning rate and epsilon 

parameters are set according to best practices. 

The script then checks if a GPU (Graphics Processing Unit) is 

available for computation. Using a GPU accelerates the training 

process due to its ability to perform many computations 

simultaneously. If a GPU is not available, the script falls back to 

using the CPU (Central Processing Unit). 

To manage the learning rate during the training process, the 

script creates a scheduler using the 

get_linear_schedule_with_warmup function. This function 

reduces the learning rate linearly with each epoch, following a 

specified 'warmup' period where the learning rate is increased. 

To enhance the reproducibility of the training process, a random 

seed is set, ensuring that any random operations will produce the 

same result each time the script is run (12). 

The model is then trained over several epochs, iterating over the 

entire training dataset in each epoch. In each iteration, the model 

takes in a batch of training data, performs forward propagation to 

compute the loss, backward propagation to compute gradients, 

and updates the model parameters using the optimizer. The 

learning rate is also updated according to the schedule (13). 

After each epoch, the model is validated using a validation 

dataset. This dataset is different from the training dataset and is 

used to evaluate the model's performance on unseen data, 

providing a measure of its generalization ability. The validation 

process does not involve updating the model parameters (14). 

The script outputs the training loss, validation accuracy, and the 

time taken for each epoch, providing an ongoing report of the 

model's performance during training. Once all epochs are 

complete, the script indicates that training is complete. With this 

trained model, we can classify generated questions according to 

their relevance, a key step in our automated question paper 

generation process. 

 

Model 5 

The script in focus is designed to function as a question filter, 

assessing the relevance and grammatical correctness of 

questions. It is a key component of our automated question paper 

generation system, as it filters out irrelevant or grammatically 

incorrect questions, enhancing the quality of the generated 

question set (15). 

The script begins with the initialization of two critical tools: the 

BERT tokenizer and a LanguageTool object for English (US) 

grammar checking. The BERT tokenizer, provided by the 

transformers library, transforms raw text input into a format 

understood by the BERT model, which is a sequence of integers 

representing the text (4). LanguageTool, on the other hand, is a 

powerful open-source grammar checker in Python. It's initialized 

to check for grammatical correctness based on US English norms 

(16). 

A function named check_relevance_and_sort(questions) is 

central to this script. It takes in a list of questions and iteratively 

processes each one to gauge its relevance and grammatical 

correctness. 

For each question, the BERT tokenizer first converts it into input 

IDs, a sequence of numerical representations of the text. This 

tensor is then moved to the computational device (GPU if 

available, else CPU). 

Next, the relevance of the question is evaluated. The input IDs 

are fed into a trained BERT model, which returns a set of logits 

or raw model outputs. These logits are indicative of the 

question's relevance. Using torch.argmax(), the function 

identifies the index of the highest logit value. In this context, this 

index is understood to represent relevance (3). 

If the question is deemed relevant, the script proceeds to check 

its grammar using LanguageTool. LanguageTool returns a list of 

"matches," with each match representing a grammatical error 

found in the question (16). 

The question is filtered based on this grammar check. If the 

count of matches, i.e., grammatical errors, is zero, it implies that 

the question is grammatically correct. Such a question is 

considered 'relevant' and is added to a list of relevant questions. 

After processing all the questions, the function 

check_relevance_and_sort() returns the list of relevant and 

grammatically correct questions, achieving the objective of 

filtering out unsuitable questions from the larger set (15). 

To summarize, the script utilizes the BertTokenizer from the 

transformers library, LanguageTool from the 

language_tool_python library, and tensor operations from the 

torch library to filter and sort questions based on their relevance 

and grammatical correctness. This is a crucial step in enhancing 

the quality of our automated question paper generation system, 

ensuring that the final set of questions is both topically 

appropriate and grammatically sound (3, 4, and 16). 
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Image 7: The image is a line graph, titled “Training loss”, that 

plots the decreasing trend of loss values (close to 0.01) over four 

epochs, indicating an effective training process in a machine 

learning model. 

 

Model 6 

This script leverages multiple pre-trained models to generate 

questions based on their category, which are knowledge, 

comprehension, application, analysis, synthesis, and evaluation, 

as well as their section type, which includes very short, short, 

and long (Brown et al., 2020). The aim is to create an automated 

question paper that is categorized and sectioned to meet different 

academic requirements. 

At the heart of the script is a function generate_questions, which 

produces questions from a given category using a specified pre-

trained model (Wolf et al., 2020). This allows the script to 

generate diverse question types to suit different cognitive 

demands. 

 

The function check_relevance_and_sort then checks the 

relevance of these generated questions and sorts them. This uses 

a BERT model to check if a question is relevant to the topic at 

hand, ensuring that the generated questions maintain a consistent 

focus (3). Moreover, it employs the language_tool_python 

package to check for grammar errors, ensuring that the generated 

questions are grammatically accurate (16). 

 

The function generate_question_paper is tasked with creating the 

question paper based on a given difficulty level, which can be 

easy, medium, or hard. This caters to different ability levels of 

students. The function generates a specified number of questions 

for each section type and stores them in a dictionary, maintaining 

an organized structure. To complete the process, the 

convert_to_pdf function is employed to convert the generated 

question paper into a PDF file. This function uses the reportlab 

library to create the PDF, add the questions to the document, and 

save it to local storage  (17), making the output easily accessible 

and shareable. 

The script thus works by first generating a question paper with a 

specified difficulty level and a total number of questions using 

the generate_question_paper function. Finally, it converts the 

generated question paper into a PDF file using the 

convert_to_pdf function. 

The models and libraries used include reportlab for PDF 

creation, os for OS interaction, random for random number 

generation, torch for tensor creation and operations, 

language_tool_python for grammar checking, and transformers 

for natural language processing tasks (10). 

In essence, the script automates the process of question paper 

generation. By leveraging pre-trained models, it generates 

categorized and sectioned questions, checks their relevance and 

grammar, structures them according to the difficulty level, and 

finally outputs them in a PDF file. This automates a labor-

intensive task and increases the efficiency of the question paper 

creation process, offering a range of benefits for educators and 

academic institutions (15). 

 

4. RESULT AND DISCUSSION 

Bloom Model Accuracy: 0. 7416666666666667 

 

Classification Report: 

 Precision Recall  F1-Score Support 

Analysis 0. 52 0.87 0.65 15 

Application 0. 74 0. 74 0. 74 19 

Comprehension 0.89 0. 74 0.81 23 

Evaluation 0. 78 0.78 0. 78 23 

Knowledge 0.75 0.69 0.72 13 

Synthesis 0.82 0.67 0.73 27 

Accuracy   0. 74 120 

Macro Avg 0.75 0. 75 0. 74 120 

Weighted Avg 0.77 0. 74 0.75 120 
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Ques_Type Model Accuracy: 0.6387959866220736 

Classification Report: 

 Precision Recall  F1-Score Support 

Long 0. 24 0.3 0.27 30 

Not Relevant 0.94 0.9 0. 92 118 

Short 0. 31 0. 28 0. 29 58 

Very Short 0. 61 0.65 0. 63 93 

Accuracy   0 .64 299 

Macro Avg 0.53 0. 53 0. 53 299 

Weighted Avg 0.65 0. 64 0 .64 299 

 

The first of our models, focused on Bloom's taxonomy, 

demonstrated an overall accuracy of approximately 74.2%. On 

examining individual categories within Bloom's taxonomy, the 

performance of the model showed certain strengths. For 

example, the categories 'comprehension' and 'evaluation' were 

predicted exceptionally well by our model, as indicated by F1-

scores of 0.81 and 0.78, respectively. These values, which are 

harmonic means of precision and recall, suggest a balanced 

performance of the model on these categories. 

The category 'analysis' also stood out, with a precision of 0.52 

and a recall of 0.87. Though the F1-score for 'analysis' stood at 

0.65, which was lower compared to other categories, the high 

recall indicates that the model could correctly identify a 

significant proportion of 'analysis' type questions. Similar 

observations were seen for 'knowledge' and 'synthesis' categories, 

which had F1-scores of 0.72 and 0.73, respectively. The model, 

in these cases, had a fair balance of precision and recall, which is 

indicative of reliable and consistent performance. 

We further trained a separate model to classify question types. 

This model yielded an overall accuracy of around 64%, 

demonstrating its capability to distinguish among different 

question types effectively. Among different categories, 'not 

relevant' questions were predicted with high precision (0.94) and 

recall (0.90), leading to an impressive F1-score of 0.92. This 

shows the model's ability to discern irrelevant questions 

accurately, which is crucial for maintaining the quality of the 

generated question paper. 

However, the model showed room for improvement in 

distinguishing between 'long', 'short', and 'very short' questions. 

These categories had F1-scores of 0.27, 0.29, and 0.63, 

respectively. Although the F1-scores for 'long' and 'short' 

categories are relatively lower, it's important to note that the 

model still managed to achieve reasonable precision and recall, 

demonstrating a sound foundation that can be further improved. 

 

Validation Model: 

Accuracy 1.0 

Precision 1.0 

Recall 1.0 

F1 Score 1.0 

 

 

The model performed flawlessly , achieving perfect scores of 1.0 

across all key metrics : accuracy , precision, recall, and the F1 

score , indicating both a comprehensive identification of true 

positives and a complete absence of false positives and false 

negatives.  

 

 

Our research's central focus involved using the BERT-based 

sequence classification model, a variant of the Bidirectional 

Encoder Representations from Transformers (BERT), to validate 

the performance of our model for automated question paper 

generation. This sequence classification model was specifically 

fine-tuned for a binary classification task with hyperparameters 

set to a learning rate of 2e-5 and epsilon of 1e-8. 

The training of our model was executed across 4 epochs. In each 

epoch, the model underwent training on batches of data, and the 

average loss for each batch was calculated. This method of 

training allowed us to continuously adjust and optimize the 

model's internal parameters based on the calculated loss, thereby 

progressively improving its performance. 

After each training epoch, the model was subjected to a 

validation process using a separate validation dataset. This step is 
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critical in assessing the model's ability to generalize its learning 

to new, unseen data. It also allows for the early detection of 

overfitting, where a model might perform exceptionally well on 

the training data but poorly on the validation or any other new 

data. 

Upon the completion of training and validation, we computed 

several performance metrics to evaluate the efficacy of our 

model. The chosen metrics included accuracy, precision, recall, 

and the F1 score. Remarkably, the model yielded perfect scores 

of 1.0 for all these metrics. These results indicate that our model 

could accurately classify all instances in the validation dataset, 

with no false positives or false negatives recorded. 

Despite the encouraging results, it's crucial to interpret these 

scores judiciously. Perfect scores, while suggesting exceptional 

model performance, could also be indicative of overfitting, 

particularly given the multiple epochs the model was trained 

over. Overfitting poses a significant risk as it implies that the 

model may have learned the training data too well, capturing the 

inherent noise in addition to the fundamental patterns. 

Consequently, while the model would excel on the training data, 

it might struggle to perform well on new, unseen data. 

To mitigate this risk and validate our model's robustness, we 

underscore the importance of testing it on a completely 

independent test set. This step will ensure that the model's 

performance is genuinely reflective of its learning and not 

merely a consequence of having learned the training data's 

specific characteristics. 

Lastly, it's worth noting that model performance can 

substantially vary based on several factors. These include the 

complexity and distribution of the data, the choice of 

hyperparameters, and the inherent architecture of the model 

itself. Thus, while our current findings are promising, continuous 

efforts to refine the model, validate it in various contexts, and 

test it with different datasets remain critical to our research's 

success. 

 

Final results: 

The developed automated question paper generation system 

successfully employs advanced language models and linguistic 

tools to generate a range of questions of varying difficulty levels 

and types. By designating categories and sorting the generated 

questions accordingly, a structured question paper is compiled. 

 

The question generation process employs a large transformer-

based language model, which assesses each generated question 

for its relevance and grammatical accuracy. 

Only those questions that meet the criteria of being both relevant 

and grammatically correct are considered valid and added to the 

question bank. 

The system has the capacity to generate question papers of 

varying difficulty levels: easy, medium, and hard. It 

accomplishes this by assigning different weights to various 

cognitive domains, such as "knowledge," "comprehension," 

"application," "analysis," "synthesis," and "evaluation." For each 

difficulty level, the system generates an equal number of 

questions for each type of question, selecting the cognitive 

domain according to the defined weights. 

The generated question bank is structured and categorized into 

three types: "very short," "short," and "long." This classification 

system ensures a variety of question types on the generated 

paper. 

Once the question bank is populated, the system proceeds to 

compile these questions into a structured PDF document. The 

formatted question paper is saved as a PDF file, allowing easy 

dissemination. 

In the application of this system, a medium difficulty question 

paper was generated with a total of ten questions. The final 

output was a well-structured question paper, conveniently 

formatted and divided into sections based on the question types. 

However, it is important to note that while the system 

successfully generated a variety of questions, due to limitations 

in the available dataset, the questions did not fully align with the 

class 10 science course syllabus. This observation emphasizes 

the necessity of a robust, diverse, and syllabus-oriented dataset 
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for improved results. Future efforts will need to focus on 

expanding and refining the dataset to enhance the alignment of 

the generated questions with the relevant syllabus and to increase 

the diversity and quality of the questions. 

 

Limitations possessed by the researchers: 

Data Availability and Quality: Our study faced a formidable 

challenge centered on the availability and quality of the training 

data. The essence of effective automated question generation lies 

in a model's capacity to learn from a diverse, rich, and syllabus-

specific dataset. Our available dataset, though comprehensive in 

its own right, fell short of fully mirroring the class 10 science 

course syllabus. Consequently, the questions produced by the 

model occasionally veered off-course, underscoring the pivotal 

role of data quality in shaping the output. This limitation is not 

merely a hurdle but a significant roadblock, barricading our 

model's full potential. Without access to a syllabus-aligned, rich, 

and representative dataset, even an intricately designed model 

will falter in crafting accurate, varied, and contextually fitting 

questions. 

 

Potential Overfitting: An ostensibly stellar performance by our 

model in the validation phase, with perfect scores across the 

board, led us to another potential limitation - overfitting. A 

common pitfall in machine learning, overfitting occurs when a 

model, after being trained too well on the available data, fails to 

perform as expected on unseen data. 

Our model, fine-tuned over multiple epochs on a limited dataset, 

might have learned more than the desired underlying patterns; it 

possibly picked up the noise inherent in the data. Consequently, 

its excellent performance on the training set may not guarantee 

an equivalent performance on unseen data. This overfitting risk 

is a critical constraint since it can result in overly optimistic 

validation metrics, undermining the model's reliability and 

potentially leading to subpar performance in real-world 

scenarios. The effectiveness of our model, despite promising 

results during training and validation, remains hamstrung without 

a broad and diverse dataset that would test its true 

generalizability. 

 

Precision of Grammar Checking Tool: Our research adopted 

language_tool_python as the grammar checking tool, which, 

despite delivering an admirable performance, came with its own 

set of limitations. The tool's precision metric, particularly, could 

use some enhancements. The current state might produce a non-

trivial number of false positives, marking grammatically 

incorrect questions as correct. This highlights the imperative for 

refining the tool's precision to minimize such occurrences. 

 

Balancing Difficulty Levels: The ability of our system to 

generate question papers of varying difficulty levels could be 

seen as a double-edged sword. While the system's design allows 

flexibility in producing papers with varying difficulty levels, an 

imbalance in the assigned weights could potentially skew the 

difficulty levels in the generated questions. This emphasizes the 

need for a more nuanced weight assignment that will ensure 

balanced difficulty levels across the generated questions. 

 

Hardware Limitations: Despite the considerable advances in 

computational capabilities, hardware limitations still represent a 

significant hurdle in our research. The training and fine-tuning of 

language models, especially models like BERT and GPT, are 

resource-intensive processes that demand high computational 

power and memory. In our research, we encountered constraints 

in terms of processing power, memory, and storage. These 

hardware limitations not only restrict the scale and speed at 

which the model can be trained but can also impact the model's 

capacity to handle larger and more complex datasets. Ultimately, 

this leads to a trade-off between the quality and complexity of 

the model and the computational resources available, which can 

significantly impact the effectiveness and efficiency of the 

automated question generation system. 

 

Diversity and Quality of Questions: The final limitation worth 

mentioning pertains to the diversity and quality of the questions 

generated. While our system is adept at producing a wide array 

of questions, the full potential is dependent on the richness and 

representativeness of the training dataset. This draws attention 

back to the necessity for a diverse, high-quality dataset that fully 

embodies the relevant syllabus. This can ensure that the 

generated questions cover a broad range of topics, difficulty 

levels, and question types in the most effective way possible. In 

conclusion, while our model manifests a promising avenue in 

automated question generation, it stands inhibited by limitations 

related to data availability and quality, overfitting risk, precision 

of the grammar checking tool, balance in difficulty levels, 

hardware limitations and the diversity and quality of questions. 

Addressing these constraints is the key to unlocking the full 
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potential of our model. Once these challenges are successfully 

overcome, our model could potentially be a game-changer in 

automated question paper generation, making it more efficient, 

adaptable, and contextually accurate. 

 

5. FUTURE SCOPE 

1. Expansion of Subject Classes: The current project can be 

expanded to include a wider range of subject areas, beyond those 

it currently supports. As the knowledge domains increase, the 

versatility and applicability of the system would also grow. 

 

2. Inclusion of Images, Diagrams, and Figures: A significant 

enhancement would be the integration of another AI model that 

can generate or choose relevant images, diagrams, and figures. 

This feature would be particularly beneficial for science and 

mathematics questions that often require visual aids for effective 

understanding and problem-solving. 

 

3. Demographic Specific Training: The model could be trained 

to cater to specific demographic groups, accommodating 

regional, cultural, and age-related variances in knowledge and 

learning styles. This could make the generated question papers 

more relevant and accessible to different groups of students. 

 

4. Multilingual Support: Expanding the model to support 

multiple languages would enable the generation of tailored 

question papers for different regions and language groups, 

making the tool more inclusive and globally applicable. 

 

5. Adaptive Difficulty Level: The model could be advanced to 

adapt the difficulty level of questions based on each student's 

progress or performance. Reinforcement learning algorithms 

could be applied to optimize the difficulty level over time. 

 

6. Integration with Learning Management Systems (LMS): 

The model could be integrated with existing Learning 

Management Systems to provide a seamless experience for 

generating and assigning question papers. Additionally, this 

integration could allow the model to use student performance 

data to refine the questions it generates further. 

 

7. Inclusion of Interactive Questions: The model could be 

enhanced to generate interactive questions, such as multiple-

choice questions or fill-in-the-blanks, in addition to descriptive 

ones. This would require the model to generate the question, 

plausible answers, and distractors. 

 

8. Subjective Assessment: Another direction for future 

development could be extending the model's capabilities to grade 

subjective answers, providing a comprehensive solution for 

automated question paper generation and grading. 

 

9. Collaborative Learning: The system could be improved to 

generate questions that encourage discussion and collaborative 

problem-solving among students, thereby fostering an interactive 

and cooperative learning environment. 

 

10. Personalized Learning Paths: Leveraging individual 

learner profiles and historical data, the system could identify 

patterns, strengths, and areas of improvement for each learner. 

This information could be used to create personalized learning 

paths, guiding each student with a customized sequence of topics 

and difficulty levels. 

The continuous advancements in the field of AI and ML offer 

enormous potential for improving and expanding the capabilities 

of this system, making it a versatile tool in the realm of 

education. 

 

6. CONCLUSION 

In conclusion, our study demonstrates significant strides in the 

application of artificial intelligence for automated question paper 

generation, harnessing the robust capabilities of the BERT-based 

sequence classification model. Our models displayed 

commendable performance in the classification of question 

categories and types, with an overall accuracy of 74.2% and 64% 

respectively. Particularly, the model's strong capability to discern 

irrelevant questions, critical to maintaining the quality of the 

generated question paper, was a highlight. 

Additionally, the system's flexibility in producing question 

papers of varying difficulty levels is promising, demonstrating its 

potential for customization according to the needs of individual 

learners. We also successfully employed a comprehensive 

system for grammar checking, adding an essential layer of 

quality control to the question generation process. 

Despite our achievements, we acknowledge certain limitations in 

our study, most notably the need for a richer, syllabus-specific 

dataset for training, risk of overfitting, refinement of the 

grammar checking tool, balance in difficulty levels, hardware 
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constraints, and the enhancement of question diversity and 

quality. While our models showed robust performance on the 

available dataset, they are yet to be tested on a broader, more 

diverse set. Our promising results could be a testament to the 

models' capacity to learn or an indication of overfitting; hence, 

further testing on a completely independent set is crucial. The 

perfect metrics scored during validation should be interpreted 

judiciously. While they do suggest an excellent model 

performance, they could also be indicative of overfitting. 

Furthermore, potential false positives by the grammar checking 

tool necessitate its precision enhancement to minimize errors. 

While our research encountered certain limitations, the 

challenges faced also illuminated avenues for future 

advancements. Expanding the range of subject classes, 

introducing images and diagrams, catering to specific 

demographic groups, adding multilingual support, and 

integrating with existing Learning Management Systems are 

among the possibilities that could propel our system to new 

heights of efficiency and accuracy. The evolution of this system 

to an adaptive learning model that tailors difficulty level 

according to a student's progress could revolutionize 

personalized learning. Similarly, extending the model to grade 

subjective answers and to generate interactive questions could 

provide a holistic solution to automated question paper 

generation and grading. 

In summary, our study provides a strong foundation for further 

exploration in automated question generation and highlights the 

potential of AI in reshaping educational assessment tools. As we 

continue to refine our model, validate it in various contexts, and 

test it with different datasets, we are optimistic about overcoming 

the current limitations and unlocking the full potential of our 

system, contributing significantly to the field of education 

technology. 
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