
 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

1

Intelligent Question Paper Generation using AI and ML

Algorithms for Tailored Difficulty Levels

Tejasvi Vijay Panchal
1
, Lakshya Singh Chouhan

2

Indian Institute of Teacher Education, Sector 15, Gandhinagar, 382016, India
1

Poornima Institute of Engineering and technology, Sitapura, Jaipur, 302012, India
2

………………………………………………………………………………………..

Corresponding Authors: Tejasvi Vijay Panchal

Email: tejasvi007panchal@gmail.com; Mobile: +91-7014614791

Funding or Supporting Agencies and Grants Details: Self-funded, and no external funding or supporting agencies were involved.

………………………………………………………………………………………..

 ABSTRACT

Automated question paper generation has emerged as a prominent field in educational settings, driven by advancements in artificial

intelligence and machine learning. This research paper presents a comprehensive approach that harnesses advanced language models

and machine learning techniques to generate question papers with diverse difficulty levels and types. The methodology encompasses

several key steps. To begin, we employ the pandas and os libraries in Python for data preparation. Pandas, a versatile tool for data

manipulation and analysis, facilitates the creation of a structured DataFrame from questions and labels extracted from text files. The

os module, on the other hand, aids in managing files and directories, enabling efficient iteration over files and content retrieval. Data

cleaning is crucial, and we accomplish it by employing regular expressions with the re module. This step sanitizes the input question

text, removing unwanted characters and ensuring a cleaner and more uniform dataset. Next, we train machine learning models using

the popular sklearn library. The dataset is split into training and testing sets using the sklearn.model_selection.train_test_split

function, allowing us to train the models on the larger training set and evaluate their performance on the testing set. To transform the

textual data into a format suitable for machine learning models, we utilize the sklearn.feature_extraction.text.CountVectorizer. This

process, known as vectorization, converts the text into a matrix of token counts, facilitating subsequent analysis. For the classification

task, we adopt the sklearn.naive_bayes.MultinomialNB algorithm, renowned for its efficacy in text classification. This algorithm is

trained using the feature matrix from the CountVectorizer and the corresponding labels. Evaluation of the models' performance is

achieved through the sklearn.metrics.accuracy_score function, which compares the predicted labels with the actual labels from the

testing set. To facilitate future use without retraining, the trained models, along with the CountVectorizer, are saved using the joblib

library. In the question classification and storage stage, new questions are classified using the trained models and stored in separate

files. These questions are imported from text files, cleaned using the aforementioned data cleaning techniques, and then vectorized.

The trained models are utilized to classify the questions, and the results are saved in separate text files based on the predicted labels.

This organization enables efficient retrieval of questions according to their classification, simplifying the generation of specific

question paper types. Moreover, we fine-tune the GPT-2 model using the Transformers library, a powerful language model. This fine-

tuning process occurs on classified question datasets, enabling the generation of unique and contextually relevant questions.

Additionally, we utilize BERT, a highly effective model in Natural Language Processing (NLP), for text classification. A pre-trained

BERT model is fine-tuned specifically for sequence classification, enabling the categorization of questions based on their relevance.

To enhance the quality of the generated questions, we incorporate a question filter script that assesses relevance and grammatical

correctness. This script identifies and eliminates irrelevant or grammatically incorrect questions, thus improving the overall quality of

the generated question set. To create well-structured question papers, we employ multiple pre-trained models capable of generating

questions categorized by cognitive domains (such as knowledge, comprehension, application, analysis, synthesis, and evaluation) and

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

2

section types (including very short, short, and long). This approach ensures a balanced representation of different question types and

difficulty levels in the generated question papers. Finally, we employ the convert_to_pdf function, utilizing the reportlab library, to

convert the generated question paper into a PDF format. This conversion process simplifies dissemination and sharing of the question

paper output. The evaluation of our model yields promising results, with an overall accuracy of approximately 74.2% in predicting

Bloom's taxonomy categories. Notably, the model demonstrates strengths in predicting 'comprehension' and 'evaluation'. Additionally,

the question type classification model exhibits high accuracy in identifying 'not relevant' questions, a crucial aspect for maintaining

question paper quality. However, further improvements are required in distinguishing between 'long,' 'short,' and 'very short '

questions. Furthermore, aligning the generated questions with the class 10 science course syllabus is a priority for future work, as the

current limitations in the dataset hindered full alignment. This research contributes significantly to the advancement of automated

question paper generation systems. It highlights the importance of leveraging advanced language models, machine learning

algorithms, and effective data preprocessing techniques. The findings provide valuable insights into the strengths and areas for

improvement in our proposed methodology, laying the foundation for further research to refine and enhance these systems.

Keywords: . Automated Question Paper Generation; Machine Learning and Artificial Intelligence; Natural Language Processing

(NLP); Python Libraries (sklearn, pandas, Transformers); Pre-trained Models (GPT-2, BERT); Text Classification and Vectorization

1. INTRODUCTION

The rapidly evolving era of Artificial Intelligence (AI) and

Machine Learning (ML) algorithms opens up a myriad of

opportunities to revolutionize numerous aspects of our lives, one

of which is the field of education (Bishop, 2006). Traditionally,

question paper generation has been a manual and time-

consuming process, often resulting in question papers that do not

optimally align with the varying learning needs and abilities of

students. Recognizing this gap, this research aims to introduce an

intelligent question paper generation system using AI and ML

algorithms, tailored to create diverse difficulty levels, thereby

catering to the unique learning requirements of every student.

The context of this research is established amidst the current

educational landscape where standardized assessments often fail

to accurately measure a student's understanding or aptitude (4).

By integrating AI and ML algorithms into the process of

question paper generation, the objective is to create a more

dynamic, personalized, and effective evaluation method (1). The

purpose is not only to improve the efficiency of the process but

also to augment the quality of education and assessments.

The problem being addressed here is the largely uniform and

standardized nature of assessment papers that often neglect the

unique learning pace and understanding level of each student.

The outcome can potentially lead to skewed academic results and

may not foster inclusive learning. This research aspires to

provide a tailored solution to this issue, presenting a unique and

personalized approach to assessments. With the advent of

sophisticated machine learning models such as the Multinomial

Naive Bayes algorithm (1), GPT-2 (2), and BERT (3), among

others, the feasibility and applicability of AI in creating

personalized question papers has significantly increased. The

proposed system leverages these state-of-the-art ML algorithms

to classify, generate, and evaluate questions based on specific

parameters such as relevance and grammatical correctness, thus

providing a tailored question paper for each student.

The study's primary goal is to design, implement, and evaluate an

AI-based question paper generation system capable of generating

diverse difficulty levels and ensuring the relevance and

grammatical correctness of questions (3). To achieve this,

various ML algorithms are employed, including, but not limited

to, the Multinomial Naive Bayes algorithm for classification (1),

GPT-2 for question generation (2), and BERT for relevance

assessment (3). The research also explores the integration of

various Python libraries such as Pandas, os, and re for data

manipulation, cleaning, and file management, respectively (4).

The research's significance is two-fold. Academically, it

contributes to the emerging field of AI in education by

presenting a practical and scalable solution for tailored question

paper generation. Practically, it offers a potential tool that can

revolutionize the way we approach assessments, fostering a more

inclusive, personalized, and effective learning environment.

The research will primarily involve developing and testing

multiple ML models to carry out specific tasks, including data

preprocessing, model training and evaluation, question

classification and storage, and eventually question generation.

The system will use different ML models for different tasks,

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

3

working in an integrated manner to achieve the desired output

(40).

In summary, this research proposes to leverage AI and ML

algorithms to create an intelligent question paper generation

system, marking a significant step towards personalized and

effective education. By doing so, it attempts to address the need

for a more inclusive, comprehensive, and tailored approach to

assessments, ultimately contributing to improved teaching and

learning outcomes.

2. REVIEW

This meta-analytic review endeavors to examine key

developments in the field of machine learning, natural language

processing (NLP), and educational taxonomies, with a specific

focus on their application to pattern recognition, language

modeling, and automated question generation.

As per (1), set the foundation for pattern recognition and

machine learning, exploring different techniques, mathematical

frameworks, and potential applications. This work forms the

basis for many subsequent advancements in machine learning

(1). The role of machine learning is further complemented by

scikit-learn, a powerful library providing efficient tools for

statistical modeling, including classification, regression,

clustering, and dimensionality reduction (7 and 8).

In the domain of NLP, advancements have been led by

transformer-based models. Transformer architectures have

revolutionized NLP tasks by focusing on self-attention

mechanisms that better understand the context within sequences

of words. In (3) introduced BERT (Bidirectional Encoder

Representations from Transformers), a pre-training model that

has significantly improved the state-of-the-art across a broad

array of tasks. OpenAI's GPT-2 (2) and GPT-3 (5) built upon this

work and demonstrated the versatility of these models in an

unsupervised setting. These models can generate coherent,

contextually relevant, and grammatically correct sentences. The

capabilities of these models were extensively studied by (4),

outlining their potential in a range of tasks.

The educational field has been enriched by Bloom's Taxonomy,

which categorizes cognitive skills into six levels: knowledge,

comprehension, application, analysis, synthesis, and evaluation

(5). This taxonomy offers a blueprint for structuring

educationally relevant questions at varying difficulty levels.

On the computation front, PyTorch has become a preferred tool

for researchers due to its flexibility and efficiency (10). This is

further supplemented by Adam, an optimization algorithm that

has been widely adopted for its efficiency in dealing with large-

scale problems (13). In (11), extended Adam with decoupled

weight decay regularization to improve the algorithm's

performance further.

Accuracy estimation and model selection have been studied by

(14) who proposed cross-validation and bootstrap methods.

These techniques are crucial for verifying the effectiveness and

generalization capability of the models.

In (16), proposed a rule-based grammar checker, a vital tool for

ensuring the grammatical correctness of generated content.

Similarly, in (17), has provided Python users with a library for

PDF processing, enabling the output of generated content in a

readily accessible format.

In conclusion, the field of automated question generation has

significantly benefited from advancements in machine learning,

NLP, and education research. The intersection of these

disciplines allows for the creation of sophisticated models

capable of generating, evaluating, and sorting questions based on

their relevance, complexity, and grammatical correctness.

 3. METHODS

Model 1

This research involves an automated question paper generator,

implemented using various Python libraries(Pedregosa et al.,

2011). The main steps of the methodology are data preparation,

model training, model saving, question classification, and storage

of classified questions.

Data Preparation: The initial phase of the project involves

preparing the data for model training. For this, the Python

libraries pandas (McKinney, 2010) and os are used.

Pandas: The Pandas library is a powerful tool used for data

manipulation and analysis in Python. Here, it is employed to

create a DataFrame from the questions and labels read from text

files. A DataFrame is a two-dimensional labeled data structure

where columns can potentially be of different types. The data is

organized in a tabular form that is easy to manipulate and

analyze, ideal for our machine learning model.

OS: The os module in Python is used for interacting with the

operating system. Here, it is primarily used for managing files

and directories. Specifically, it enables the code to iterate over all

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

4

files in the provided directories, read the content of each file, and

create new directories for storing classified questions.

Data cleaning is performed using the function clean_question,

defined using Python's re module.

RE: The re module in Python provides support for regular

expressions, enabling us to manipulate strings using various rules

and patterns. In the clean_question function, it is used to sanitize

the input question text, removing unwanted characters and

helping in making the dataset cleaner and more uniform.

Model Training: This research utilizes two machine learning

models for classifying the questions. They are trained using the

create_model function which uses several components from the

sklearn library (Pedregosa et al., 2011).

sklearn.model_selection.train_test_split: This function is used

to split the dataset into two parts: a training set and a testing set.

The training set is larger and used to train the model. The testing

set is used to evaluate the model's performance.

sklearn.feature_extraction.text.CountVectorizer:

CountVectorizer is used to convert the text data into a matrix of

token counts. This process, known as vectorization, is a crucial

step in preprocessing for Natural Language Processing (NLP). It

transforms textual data into a format that can be processed by the

machine learning model.

sklearn.naive_bayes.MultinomialNB: The Multinomial Naive

Bayes algorithm from sklearn's naive_bayes module is used as

the machine learning model in this project. It is a popular choice

for text classification tasks. The algorithm is trained using the

feature matrix from the CountVectorizer and the corresponding

labels. It uses the principles of Bayes' Theorem but with strong

independence assumptions.

Model Evaluation: Model performance is gauged using

sklearn's accuracy_score function (Pedregosa et al., 2011).

sklearn.metrics.accuracy_score: After the model has been

trained and has made predictions on the testing set,

accuracy_score is used to compute the accuracy of those

predictions. This is done by comparing the predicted labels with

the actual labels from the testing set.

Model Saving: Once the models are trained, they are saved to

disk along with the CountVectorizer using the joblib library.

 joblib: Joblib is a Python library used for saving and loading

Python objects that involve large data arrays. Here, it is used to

serialize the trained models and the vectorizer, saving them to

the disk. This allows the models to be reused later without

retraining.

Question Classification and Storage:

Finally, new questions are classified using the trained models.

The questions are imported from a text file, cleaned using the

clean_question function, vectorized, and then passed through the

models for classification. The classified questions are then saved

in separate text files named after the predicted labels from both

models, facilitating efficient retrieval for specific types of

question papers.

Working: This research presents a three-fold methodology for

an automated question paper generator, integrating training of

classifiers, classification of datasets, and management of

classified data.

1. Training of Classifiers:

In the initial phase, two distinct text classification models are

trained. The training datasets comprise two types: one based on

the length of the questions (very short, short, long) and the other

based on Bloom's taxonomy (knowledge, comprehension,

application, analysis, synthesis, evaluation) (5).

The first model is trained to identify the cognitive level of the

question based on Bloom's taxonomy. Bloom's taxonomy

provides a framework that categorizes educational learning

objectives into levels of complexity and mastery (5). By training

a model on this taxonomy, the system can identify whether a

given question tests knowledge, comprehension, application,

analysis, synthesis, or evaluation.

The second model is trained to identify the length of the

question. It discerns whether the question is very short, short, or

long. This classification is valuable for constructing a balanced

and well-distributed question paper.

The models are trained using a dataset that pairs questions with

their corresponding classifications. The sklearn's train_test_split

function is used to split the dataset into training and testing sets.

The questions are then vectorized using the CountVectorizer

function, transforming the text data into a format that can be

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

5

processed by the machine learning models. These vectorized

questions form the basis for training the Multinomial Naive

Bayes Classifier (MultinomialNB), a popular choice for text

classification tasks (9).

2. Classification of Datasets:

Once the models are trained, they are used to classify all

questions in the datasets. Each question is processed through

both models, resulting in a dual classification. For instance, a

question might be classified as 'short' in terms of length and

'evaluation' in terms of Bloom's taxonomy. The system would

then label this question as 'short-evaluation'. This two-fold

classification system enables a rich, multi-dimensional

organization of the questions.

Additionally, the models are capable of classifying a set of

unclassified questions provided in a separate text file. This

feature, however, is optional and is used based on the

requirements of the user.

3. Management of Classified Data:

Following classification, the system stores the questions in an

organized manner. For each unique classification label, a

separate directory is created (if it doesn't already exist). Each

question is then saved in its corresponding directory, denoted by

its predicted label.

For example, if an unclassified question gets classified as 'short-

knowledge', it is added to the 'short-knowledge' directory. This

automated system not only categorizes questions but also

provides an efficient retrieval mechanism, aiding in the speedy

compilation of specific types of question papers.

The trained models, along with the vectorizer, are saved using

joblib to allow future reuse without retraining. This method

promotes system efficiency and offers the flexibility to process

new, unclassified questions at any time.

Image 1: Initial system layout with 'qu' and 'bloom' folders

containing text files named for question lengths and Bloom's

taxonomy categories, respectively, before code execution.

Image 2 and 3: Post-classification system structure showcasing

original 'bloom' and 'qu' folders, alongside a new 'classified'

folder. The latter contains files named for question length and

Bloom's category combinations, such as 'short-knowledge.txt',

illustrating the system's dual categorization for efficient question

retrieval.

Model 2

The objective of this method is to fine-tune the GPT-2 model, a

large transformer-based language model, on classified question

datasets for the generation of unique questions (2). This process

utilizes the Transformers library developed by Hugging Face (4).

The fine-tuning operation unfolds in the following steps:

1. Installation and Importation of Libraries: Initially, the

transformers and accelerate libraries are installed using pip,

Python's package installer. The transformers library, by Hugging

Face, provides pre-trained models that facilitate various tasks in

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

6

Natural Language Processing (NLP) (4). In this research, it is

used for fine-tuning the GPT-2 model.

The accelerate library, also developed by Hugging Face, is a

PyTorch utility designed for easy multi-GPU and distributed

training. The inclusion of this library is intended to optimize the

process of model fine-tuning, ensuring efficient utilization of

available computational resources.

Following installation, the necessary classes and methods from

the transformers library are imported. These components are

crucial for the tokenization process, model handling, trainer

specification, training argument formation, and data collation.

2. Tokenization: An instance of AutoTokenizer is created using

the pre-trained GPT-2 large model (4). Tokenization involves

breaking down sentences into smaller units—words, subwords,

or symbols—so they can be processed by the model. The

tokenizer converts the text data into a format understandable by

the model, transforming input text into an array of integers

representing the underlying semantic content.

3. Dataset Loading: A load_dataset function is defined to return

a TextDataset object, which is a PyTorch Dataset. This object

contains the tokenized text data from a specified file, prepared

for training. The TextDataset class from the transformers library

reads a text file and converts it into a suitable dataset for training

the transformer model.

4. Data Collation: A DataCollatorForLanguageModeling is

defined, a specific collator for language modeling tasks. It is a

function that batches examples from the dataset and prepares

them for training or evaluation. It helps mask tokens for a

masked language modeling objective, which is a common

training method for transformer models.

5. Path Gathering: All text file paths from the classified folder

are collated into dataset_paths, ensuring that each file of

classified questions is identified and included in the fine-tuning

process.

6. Model Fine-Tuning: The crux of the operation is the fine-

tuning of the GPT-2 model. For each file in dataset_paths, a new

instance of the GPT-2 large model is created. The corresponding

dataset is loaded, and training arguments are defined using the

TrainingArguments class. This class specifies training

parameters such as the output directory, number of training

epochs, and batch size.

The Trainer class creates a training loop for PyTorch, optimized

for transformers. It utilizes the model, training arguments, data

collator, and dataset to fine-tune the model. Consequently, each

model is fine-tuned on a particular dataset, allowing the model to

generate questions specific to its category.

7. Model Saving: After fine-tuning, the configuration of the

model and the model itself are saved for future use. These saved

models can generate unique questions corresponding to their

training datasets, thereby enhancing the variety and uniqueness

of question papers (2).

In summary, this methodology leverages the GPT-2 model's

power to generate unique, category-specific questions. It presents

a robust technique for question paper generation, thereby

enabling a diverse and dynamic examination landscape.

Working: The principal goal of this phase in the methodology is

the fine-tuning of the GPT-2 large model on the various

classified datasets created in the preceding step. This fine-tuning

procedure is designed to equip the GPT-2 model with the

capability to generate unique questions pertaining to each

category established during classification, including but not

limited to classifications such as short-evaluation, long-analysis,

and very short-knowledge. The results of this fine-tuning process

are subsequently stored for future usage and retrieval.

Fine-Tuning the GPT-2 Model:

To commence the fine-tuning process, the GPT-2 model is

instantiated for each category in the classified datasets. Each

model instance is fine-tuned on the classified datasets, which

have been prepared according to categories based on Bloom's

taxonomy and question type (very short, short, long).

The fine-tuning process essentially consists of training the model

on a new task using the pre-existing model weights. This method

allows the model to apply its pre-trained knowledge to the new

task, reducing the required training time and data. In this case,

the GPT-2 model, which is pre-trained on a large corpus of

internet text, is fine-tuned on the specific task of generating

unique questions for each category.

Fine-tuning is carried out using the Trainer class from the

Hugging Face's transformers library. The Trainer class handles

training and evaluation of the model. It utilizes the model,

training arguments, data collator, and the classified datasets to

fine-tune each model. This process equips each model to

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

7

generate unique questions, consistent with the specifics of their

respective category.

Storing Fine-Tuned Models:

Upon completion of the fine-tuning operation, each model, now

specifically trained for generating questions from a distinct

category, is stored for future use. The configuration of the model

and the model itself are saved using the save_model() function.

The results are stored in a designated directory, './results'. Each

category gets its own sub-directory within this folder, matching

the respective categories, for example, ./results/short-evaluation,

./results/long-analysis, ./results/very short-knowledge, and so

forth.

In essence, this methodology equips the GPT-2 model to

generate category-specific unique questions. The fine-tuning

process enables a granular approach to question generation, thus

providing the capacity to generate a wide variety of questions

aligned with specific pedagogical objectives. This fine-tuned

GPT-2 model thereby adds dynamism and depth to the landscape

of automated question paper generation.

Image 4: Initial system state before GPT-2 model fine-tuning,

indicated by the absence of the 'results' folder for storing fine-

tuned models.

Image 5 and 6: Transformed system state after GPT-2 model

fine-tuning, signified by the 'results' folder containing category-

specific sub-directories, each housing a fine-tuned model for

generating questions in the corresponding category, thereby

improving automated question generation.

Model 3

Methods

The purpose of this step in our methodology is to prepare a text

dataset for a classification task. This task's objective is to discern

the relevance of a question, separating questions into relevant

and non-relevant categories. The employed model for this step is

BERT (Bidirectional Encoder Representations from

Transformers), known for its effectiveness in numerous Natural

Language Processing tasks, including text classification (3).

Preparing the Dataset:

Data is loaded using the defined function load_data. The function

reads a text file, and each line is subjected to formatting for

uniformity; all leading and trailing white spaces are stripped, and

the text is converted to lower case. Each line (question) is then

assigned a label to signify its relevance. Relevant and non-

relevant data are subsequently loaded, combined into a single

dataset, and shuffled for unbiased model training.

The dataset's cleaning process follows next, where all

punctuation marks are removed from the questions using the

clean_question function, enhancing the efficiency of the

subsequent tokenization step.

Tokenizing and Conversion to PyTorch Tensors:

Tokenization for this task utilizes BERT's tokenizer, instantiated

as BertTokenizerFast, using the pre-trained 'bert-base-uncased'

model (4). The tokenizer is not only responsible for converting

the text data into a model-friendly format, but also for creating

attention masks that differentiate padding tokens from non-

padding tokens.

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

8

After tokenization, the resultant data and attention masks are

converted into PyTorch tensors. The labels for relevance are also

converted into tensor format, thus achieving compatibility with

the PyTorch-based model.

Data Splitting and DataLoader Creation:

Once the tensors are prepared, the data is split into training and

validation sets using the train_test_split function from

sklearn.model_selection library (7). The split ratio employed is

90:10, signifying that 90% of the data is used for training, and

the remaining 10% is used for validation.

To prepare the data for training and validation, DataLoader

objects are created. For the training set, a RandomSampler is

employed. The usage of random sampling helps in facilitating

stochastic optimization. On the other hand, the validation set

uses a SequentialSampler.

In summary, this phase in the methodology is concerned with

creating a well-organized pipeline for preparing a text

classification dataset. This pipeline spans from raw text data to

ready-to-use DataLoader objects, which are primed for model

training.

Significant Models and Libraries

The methodology in question leverages several noteworthy

models and libraries to accomplish the text classification task:

xformers: This library, installed via the command !pip install

xformers, houses an extensive collection of transformer models.

These models are optimized for performance across diverse

hardware and applications.

language_tool_python: Installed via the command !pip install

language_tool_python, this library is a Python wrapper for

LanguageTool, facilitating grammar checking in Python.

BertTokenizerFast: This class, part of the transformers library,

is a fast tokenizer for the BERT model (4). It is crucial for the

transformation of raw text data into a format ingestible by the

model.

PyTorch (torch): PyTorch is a renowned open-source machine

learning library based on the Torch library (10). It is used to

manipulate tensors, the core data structures in PyTorch, and

perform various operations on them.

Train_test_split & shuffle: These functions are part of the

sklearn library (7). They are utilized to split datasets into training

and validation subsets randomly and shuffle the data to ensure

unbiased model training.

TensorDataset, DataLoader, RandomSampler,

SequentialSampler: These classes, part of PyTorch's

torch.utils.data module, are used to wrap the dataset into

PyTorch's tensor format, load the data in batches, and perform

sampling for both training and validation datasets (10).

The code combines the strengths of these models and libraries to

load, clean, and tokenize the data. It then prepares the data for

training a BERT model by converting it into PyTorch tensors and

creating DataLoader objects. The results are ready-to-use

DataLoader objects that can be directly used for training a

model.

Model 4

The script under discussion represents a procedure for fine-

tuning a pre-trained BERT (Bidirectional Encoder

Representations from Transformers) model for sequence

classification, a task in Natural Language Processing (NLP) that

involves assigning predefined categories to sequences of words

or sentences (3). This is an important component of our

automated question paper generation system, enabling it to

categorize generated questions based on their relevance.

To start, we import several essential libraries. This includes

transformers, a popular NLP library that provides state-of-the-art

pre-trained models and other NLP utilities (4), torch for handling

tensor computations (10), and AdamW and BertConfig from the

transformers library for model optimization and configuration

(11).

 We employ the BertForSequenceClassification model, a variant

of the BERT model equipped with a classification layer on top.

This model is ideal for tasks that involve classifying a sequence

into one of two or more categories, a binary classification in our

case. The model parameters are loaded using the

.from_pretrained() function, which fetches the pre-trained model

weights (4).

Once the model is set, we initialize an AdamW optimizer. This is

a variant of the Adam optimizer that corrects its weight decay

handling, a crucial aspect of optimizing model performance

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

9

during the training process. The learning rate and epsilon

parameters are set according to best practices.

The script then checks if a GPU (Graphics Processing Unit) is

available for computation. Using a GPU accelerates the training

process due to its ability to perform many computations

simultaneously. If a GPU is not available, the script falls back to

using the CPU (Central Processing Unit).

To manage the learning rate during the training process, the

script creates a scheduler using the

get_linear_schedule_with_warmup function. This function

reduces the learning rate linearly with each epoch, following a

specified 'warmup' period where the learning rate is increased.

To enhance the reproducibility of the training process, a random

seed is set, ensuring that any random operations will produce the

same result each time the script is run (12).

The model is then trained over several epochs, iterating over the

entire training dataset in each epoch. In each iteration, the model

takes in a batch of training data, performs forward propagation to

compute the loss, backward propagation to compute gradients,

and updates the model parameters using the optimizer. The

learning rate is also updated according to the schedule (13).

After each epoch, the model is validated using a validation

dataset. This dataset is different from the training dataset and is

used to evaluate the model's performance on unseen data,

providing a measure of its generalization ability. The validation

process does not involve updating the model parameters (14).

The script outputs the training loss, validation accuracy, and the

time taken for each epoch, providing an ongoing report of the

model's performance during training. Once all epochs are

complete, the script indicates that training is complete. With this

trained model, we can classify generated questions according to

their relevance, a key step in our automated question paper

generation process.

Model 5

The script in focus is designed to function as a question filter,

assessing the relevance and grammatical correctness of

questions. It is a key component of our automated question paper

generation system, as it filters out irrelevant or grammatically

incorrect questions, enhancing the quality of the generated

question set (15).

The script begins with the initialization of two critical tools: the

BERT tokenizer and a LanguageTool object for English (US)

grammar checking. The BERT tokenizer, provided by the

transformers library, transforms raw text input into a format

understood by the BERT model, which is a sequence of integers

representing the text (4). LanguageTool, on the other hand, is a

powerful open-source grammar checker in Python. It's initialized

to check for grammatical correctness based on US English norms

(16).

A function named check_relevance_and_sort(questions) is

central to this script. It takes in a list of questions and iteratively

processes each one to gauge its relevance and grammatical

correctness.

For each question, the BERT tokenizer first converts it into input

IDs, a sequence of numerical representations of the text. This

tensor is then moved to the computational device (GPU if

available, else CPU).

Next, the relevance of the question is evaluated. The input IDs

are fed into a trained BERT model, which returns a set of logits

or raw model outputs. These logits are indicative of the

question's relevance. Using torch.argmax(), the function

identifies the index of the highest logit value. In this context, this

index is understood to represent relevance (3).

If the question is deemed relevant, the script proceeds to check

its grammar using LanguageTool. LanguageTool returns a list of

"matches," with each match representing a grammatical error

found in the question (16).

The question is filtered based on this grammar check. If the

count of matches, i.e., grammatical errors, is zero, it implies that

the question is grammatically correct. Such a question is

considered 'relevant' and is added to a list of relevant questions.

After processing all the questions, the function

check_relevance_and_sort() returns the list of relevant and

grammatically correct questions, achieving the objective of

filtering out unsuitable questions from the larger set (15).

To summarize, the script utilizes the BertTokenizer from the

transformers library, LanguageTool from the

language_tool_python library, and tensor operations from the

torch library to filter and sort questions based on their relevance

and grammatical correctness. This is a crucial step in enhancing

the quality of our automated question paper generation system,

ensuring that the final set of questions is both topically

appropriate and grammatically sound (3, 4, and 16).

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

10

Image 7: The image is a line graph, titled “Training loss”, that

plots the decreasing trend of loss values (close to 0.01) over four

epochs, indicating an effective training process in a machine

learning model.

Model 6

This script leverages multiple pre-trained models to generate

questions based on their category, which are knowledge,

comprehension, application, analysis, synthesis, and evaluation,

as well as their section type, which includes very short, short,

and long (Brown et al., 2020). The aim is to create an automated

question paper that is categorized and sectioned to meet different

academic requirements.

At the heart of the script is a function generate_questions, which

produces questions from a given category using a specified pre-

trained model (Wolf et al., 2020). This allows the script to

generate diverse question types to suit different cognitive

demands.

The function check_relevance_and_sort then checks the

relevance of these generated questions and sorts them. This uses

a BERT model to check if a question is relevant to the topic at

hand, ensuring that the generated questions maintain a consistent

focus (3). Moreover, it employs the language_tool_python

package to check for grammar errors, ensuring that the generated

questions are grammatically accurate (16).

The function generate_question_paper is tasked with creating the

question paper based on a given difficulty level, which can be

easy, medium, or hard. This caters to different ability levels of

students. The function generates a specified number of questions

for each section type and stores them in a dictionary, maintaining

an organized structure. To complete the process, the

convert_to_pdf function is employed to convert the generated

question paper into a PDF file. This function uses the reportlab

library to create the PDF, add the questions to the document, and

save it to local storage (17), making the output easily accessible

and shareable.

The script thus works by first generating a question paper with a

specified difficulty level and a total number of questions using

the generate_question_paper function. Finally, it converts the

generated question paper into a PDF file using the

convert_to_pdf function.

The models and libraries used include reportlab for PDF

creation, os for OS interaction, random for random number

generation, torch for tensor creation and operations,

language_tool_python for grammar checking, and transformers

for natural language processing tasks (10).

In essence, the script automates the process of question paper

generation. By leveraging pre-trained models, it generates

categorized and sectioned questions, checks their relevance and

grammar, structures them according to the difficulty level, and

finally outputs them in a PDF file. This automates a labor-

intensive task and increases the efficiency of the question paper

creation process, offering a range of benefits for educators and

academic institutions (15).

4. RESULT AND DISCUSSION

Bloom Model Accuracy: 0. 7416666666666667

Classification Report:

 Precision Recall F1-Score Support

Analysis 0. 52 0.87 0.65 15

Application 0. 74 0. 74 0. 74 19

Comprehension 0.89 0. 74 0.81 23

Evaluation 0. 78 0.78 0. 78 23

Knowledge 0.75 0.69 0.72 13

Synthesis 0.82 0.67 0.73 27

Accuracy 0. 74 120

Macro Avg 0.75 0. 75 0. 74 120

Weighted Avg 0.77 0. 74 0.75 120

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

11

Ques_Type Model Accuracy: 0.6387959866220736

Classification Report:

 Precision Recall F1-Score Support

Long 0. 24 0.3 0.27 30

Not Relevant 0.94 0.9 0. 92 118

Short 0. 31 0. 28 0. 29 58

Very Short 0. 61 0.65 0. 63 93

Accuracy 0 .64 299

Macro Avg 0.53 0. 53 0. 53 299

Weighted Avg 0.65 0. 64 0 .64 299

The first of our models, focused on Bloom's taxonomy,

demonstrated an overall accuracy of approximately 74.2%. On

examining individual categories within Bloom's taxonomy, the

performance of the model showed certain strengths. For

example, the categories 'comprehension' and 'evaluation' were

predicted exceptionally well by our model, as indicated by F1-

scores of 0.81 and 0.78, respectively. These values, which are

harmonic means of precision and recall, suggest a balanced

performance of the model on these categories.

The category 'analysis' also stood out, with a precision of 0.52

and a recall of 0.87. Though the F1-score for 'analysis' stood at

0.65, which was lower compared to other categories, the high

recall indicates that the model could correctly identify a

significant proportion of 'analysis' type questions. Similar

observations were seen for 'knowledge' and 'synthesis' categories,

which had F1-scores of 0.72 and 0.73, respectively. The model,

in these cases, had a fair balance of precision and recall, which is

indicative of reliable and consistent performance.

We further trained a separate model to classify question types.

This model yielded an overall accuracy of around 64%,

demonstrating its capability to distinguish among different

question types effectively. Among different categories, 'not

relevant' questions were predicted with high precision (0.94) and

recall (0.90), leading to an impressive F1-score of 0.92. This

shows the model's ability to discern irrelevant questions

accurately, which is crucial for maintaining the quality of the

generated question paper.

However, the model showed room for improvement in

distinguishing between 'long', 'short', and 'very short' questions.

These categories had F1-scores of 0.27, 0.29, and 0.63,

respectively. Although the F1-scores for 'long' and 'short'

categories are relatively lower, it's important to note that the

model still managed to achieve reasonable precision and recall,

demonstrating a sound foundation that can be further improved.

Validation Model:

Accuracy 1.0

Precision 1.0

Recall 1.0

F1 Score 1.0

The model performed flawlessly , achieving perfect scores of 1.0

across all key metrics : accuracy , precision, recall, and the F1

score , indicating both a comprehensive identification of true

positives and a complete absence of false positives and false

negatives.

Our research's central focus involved using the BERT-based

sequence classification model, a variant of the Bidirectional

Encoder Representations from Transformers (BERT), to validate

the performance of our model for automated question paper

generation. This sequence classification model was specifically

fine-tuned for a binary classification task with hyperparameters

set to a learning rate of 2e-5 and epsilon of 1e-8.

The training of our model was executed across 4 epochs. In each

epoch, the model underwent training on batches of data, and the

average loss for each batch was calculated. This method of

training allowed us to continuously adjust and optimize the

model's internal parameters based on the calculated loss, thereby

progressively improving its performance.

After each training epoch, the model was subjected to a

validation process using a separate validation dataset. This step is

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

12

critical in assessing the model's ability to generalize its learning

to new, unseen data. It also allows for the early detection of

overfitting, where a model might perform exceptionally well on

the training data but poorly on the validation or any other new

data.

Upon the completion of training and validation, we computed

several performance metrics to evaluate the efficacy of our

model. The chosen metrics included accuracy, precision, recall,

and the F1 score. Remarkably, the model yielded perfect scores

of 1.0 for all these metrics. These results indicate that our model

could accurately classify all instances in the validation dataset,

with no false positives or false negatives recorded.

Despite the encouraging results, it's crucial to interpret these

scores judiciously. Perfect scores, while suggesting exceptional

model performance, could also be indicative of overfitting,

particularly given the multiple epochs the model was trained

over. Overfitting poses a significant risk as it implies that the

model may have learned the training data too well, capturing the

inherent noise in addition to the fundamental patterns.

Consequently, while the model would excel on the training data,

it might struggle to perform well on new, unseen data.

To mitigate this risk and validate our model's robustness, we

underscore the importance of testing it on a completely

independent test set. This step will ensure that the model's

performance is genuinely reflective of its learning and not

merely a consequence of having learned the training data's

specific characteristics.

Lastly, it's worth noting that model performance can

substantially vary based on several factors. These include the

complexity and distribution of the data, the choice of

hyperparameters, and the inherent architecture of the model

itself. Thus, while our current findings are promising, continuous

efforts to refine the model, validate it in various contexts, and

test it with different datasets remain critical to our research's

success.

Final results:

The developed automated question paper generation system

successfully employs advanced language models and linguistic

tools to generate a range of questions of varying difficulty levels

and types. By designating categories and sorting the generated

questions accordingly, a structured question paper is compiled.

The question generation process employs a large transformer-

based language model, which assesses each generated question

for its relevance and grammatical accuracy.

Only those questions that meet the criteria of being both relevant

and grammatically correct are considered valid and added to the

question bank.

The system has the capacity to generate question papers of

varying difficulty levels: easy, medium, and hard. It

accomplishes this by assigning different weights to various

cognitive domains, such as "knowledge," "comprehension,"

"application," "analysis," "synthesis," and "evaluation." For each

difficulty level, the system generates an equal number of

questions for each type of question, selecting the cognitive

domain according to the defined weights.

The generated question bank is structured and categorized into

three types: "very short," "short," and "long." This classification

system ensures a variety of question types on the generated

paper.

Once the question bank is populated, the system proceeds to

compile these questions into a structured PDF document. The

formatted question paper is saved as a PDF file, allowing easy

dissemination.

In the application of this system, a medium difficulty question

paper was generated with a total of ten questions. The final

output was a well-structured question paper, conveniently

formatted and divided into sections based on the question types.

However, it is important to note that while the system

successfully generated a variety of questions, due to limitations

in the available dataset, the questions did not fully align with the

class 10 science course syllabus. This observation emphasizes

the necessity of a robust, diverse, and syllabus-oriented dataset

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

13

for improved results. Future efforts will need to focus on

expanding and refining the dataset to enhance the alignment of

the generated questions with the relevant syllabus and to increase

the diversity and quality of the questions.

Limitations possessed by the researchers:

Data Availability and Quality: Our study faced a formidable

challenge centered on the availability and quality of the training

data. The essence of effective automated question generation lies

in a model's capacity to learn from a diverse, rich, and syllabus-

specific dataset. Our available dataset, though comprehensive in

its own right, fell short of fully mirroring the class 10 science

course syllabus. Consequently, the questions produced by the

model occasionally veered off-course, underscoring the pivotal

role of data quality in shaping the output. This limitation is not

merely a hurdle but a significant roadblock, barricading our

model's full potential. Without access to a syllabus-aligned, rich,

and representative dataset, even an intricately designed model

will falter in crafting accurate, varied, and contextually fitting

questions.

Potential Overfitting: An ostensibly stellar performance by our

model in the validation phase, with perfect scores across the

board, led us to another potential limitation - overfitting. A

common pitfall in machine learning, overfitting occurs when a

model, after being trained too well on the available data, fails to

perform as expected on unseen data.

Our model, fine-tuned over multiple epochs on a limited dataset,

might have learned more than the desired underlying patterns; it

possibly picked up the noise inherent in the data. Consequently,

its excellent performance on the training set may not guarantee

an equivalent performance on unseen data. This overfitting risk

is a critical constraint since it can result in overly optimistic

validation metrics, undermining the model's reliability and

potentially leading to subpar performance in real-world

scenarios. The effectiveness of our model, despite promising

results during training and validation, remains hamstrung without

a broad and diverse dataset that would test its true

generalizability.

Precision of Grammar Checking Tool: Our research adopted

language_tool_python as the grammar checking tool, which,

despite delivering an admirable performance, came with its own

set of limitations. The tool's precision metric, particularly, could

use some enhancements. The current state might produce a non-

trivial number of false positives, marking grammatically

incorrect questions as correct. This highlights the imperative for

refining the tool's precision to minimize such occurrences.

Balancing Difficulty Levels: The ability of our system to

generate question papers of varying difficulty levels could be

seen as a double-edged sword. While the system's design allows

flexibility in producing papers with varying difficulty levels, an

imbalance in the assigned weights could potentially skew the

difficulty levels in the generated questions. This emphasizes the

need for a more nuanced weight assignment that will ensure

balanced difficulty levels across the generated questions.

Hardware Limitations: Despite the considerable advances in

computational capabilities, hardware limitations still represent a

significant hurdle in our research. The training and fine-tuning of

language models, especially models like BERT and GPT, are

resource-intensive processes that demand high computational

power and memory. In our research, we encountered constraints

in terms of processing power, memory, and storage. These

hardware limitations not only restrict the scale and speed at

which the model can be trained but can also impact the model's

capacity to handle larger and more complex datasets. Ultimately,

this leads to a trade-off between the quality and complexity of

the model and the computational resources available, which can

significantly impact the effectiveness and efficiency of the

automated question generation system.

Diversity and Quality of Questions: The final limitation worth

mentioning pertains to the diversity and quality of the questions

generated. While our system is adept at producing a wide array

of questions, the full potential is dependent on the richness and

representativeness of the training dataset. This draws attention

back to the necessity for a diverse, high-quality dataset that fully

embodies the relevant syllabus. This can ensure that the

generated questions cover a broad range of topics, difficulty

levels, and question types in the most effective way possible. In

conclusion, while our model manifests a promising avenue in

automated question generation, it stands inhibited by limitations

related to data availability and quality, overfitting risk, precision

of the grammar checking tool, balance in difficulty levels,

hardware limitations and the diversity and quality of questions.

Addressing these constraints is the key to unlocking the full

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

14

potential of our model. Once these challenges are successfully

overcome, our model could potentially be a game-changer in

automated question paper generation, making it more efficient,

adaptable, and contextually accurate.

5. FUTURE SCOPE

1. Expansion of Subject Classes: The current project can be

expanded to include a wider range of subject areas, beyond those

it currently supports. As the knowledge domains increase, the

versatility and applicability of the system would also grow.

2. Inclusion of Images, Diagrams, and Figures: A significant

enhancement would be the integration of another AI model that

can generate or choose relevant images, diagrams, and figures.

This feature would be particularly beneficial for science and

mathematics questions that often require visual aids for effective

understanding and problem-solving.

3. Demographic Specific Training: The model could be trained

to cater to specific demographic groups, accommodating

regional, cultural, and age-related variances in knowledge and

learning styles. This could make the generated question papers

more relevant and accessible to different groups of students.

4. Multilingual Support: Expanding the model to support

multiple languages would enable the generation of tailored

question papers for different regions and language groups,

making the tool more inclusive and globally applicable.

5. Adaptive Difficulty Level: The model could be advanced to

adapt the difficulty level of questions based on each student's

progress or performance. Reinforcement learning algorithms

could be applied to optimize the difficulty level over time.

6. Integration with Learning Management Systems (LMS):

The model could be integrated with existing Learning

Management Systems to provide a seamless experience for

generating and assigning question papers. Additionally, this

integration could allow the model to use student performance

data to refine the questions it generates further.

7. Inclusion of Interactive Questions: The model could be

enhanced to generate interactive questions, such as multiple-

choice questions or fill-in-the-blanks, in addition to descriptive

ones. This would require the model to generate the question,

plausible answers, and distractors.

8. Subjective Assessment: Another direction for future

development could be extending the model's capabilities to grade

subjective answers, providing a comprehensive solution for

automated question paper generation and grading.

9. Collaborative Learning: The system could be improved to

generate questions that encourage discussion and collaborative

problem-solving among students, thereby fostering an interactive

and cooperative learning environment.

10. Personalized Learning Paths: Leveraging individual

learner profiles and historical data, the system could identify

patterns, strengths, and areas of improvement for each learner.

This information could be used to create personalized learning

paths, guiding each student with a customized sequence of topics

and difficulty levels.

The continuous advancements in the field of AI and ML offer

enormous potential for improving and expanding the capabilities

of this system, making it a versatile tool in the realm of

education.

6. CONCLUSION

In conclusion, our study demonstrates significant strides in the

application of artificial intelligence for automated question paper

generation, harnessing the robust capabilities of the BERT-based

sequence classification model. Our models displayed

commendable performance in the classification of question

categories and types, with an overall accuracy of 74.2% and 64%

respectively. Particularly, the model's strong capability to discern

irrelevant questions, critical to maintaining the quality of the

generated question paper, was a highlight.

Additionally, the system's flexibility in producing question

papers of varying difficulty levels is promising, demonstrating its

potential for customization according to the needs of individual

learners. We also successfully employed a comprehensive

system for grammar checking, adding an essential layer of

quality control to the question generation process.

Despite our achievements, we acknowledge certain limitations in

our study, most notably the need for a richer, syllabus-specific

dataset for training, risk of overfitting, refinement of the

grammar checking tool, balance in difficulty levels, hardware

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

15

constraints, and the enhancement of question diversity and

quality. While our models showed robust performance on the

available dataset, they are yet to be tested on a broader, more

diverse set. Our promising results could be a testament to the

models' capacity to learn or an indication of overfitting; hence,

further testing on a completely independent set is crucial. The

perfect metrics scored during validation should be interpreted

judiciously. While they do suggest an excellent model

performance, they could also be indicative of overfitting.

Furthermore, potential false positives by the grammar checking

tool necessitate its precision enhancement to minimize errors.

While our research encountered certain limitations, the

challenges faced also illuminated avenues for future

advancements. Expanding the range of subject classes,

introducing images and diagrams, catering to specific

demographic groups, adding multilingual support, and

integrating with existing Learning Management Systems are

among the possibilities that could propel our system to new

heights of efficiency and accuracy. The evolution of this system

to an adaptive learning model that tailors difficulty level

according to a student's progress could revolutionize

personalized learning. Similarly, extending the model to grade

subjective answers and to generate interactive questions could

provide a holistic solution to automated question paper

generation and grading.

In summary, our study provides a strong foundation for further

exploration in automated question generation and highlights the

potential of AI in reshaping educational assessment tools. As we

continue to refine our model, validate it in various contexts, and

test it with different datasets, we are optimistic about overcoming

the current limitations and unlocking the full potential of our

system, contributing significantly to the field of education

technology.

ACKNOWLEDGMENT

We would like to extend our heartfelt gratitude to Avilash Panda,

a student at the Indian Institute of Teacher Education,

Gandhinagar; Ajay Kumar, a student at the National Forensic

Science University, Gandhinagar; and Shambhu nath Upadhyay,

a student at Maharaja Sayajirao University of Baroda. Their

valuable contributions and assistance in the preparation of the

dataset used for training the models in this research paper were

indispensable.

Their dedicated efforts in collecting and organizing the data

played a crucial role in the success of our project. Their expertise

and commitment to the task were evident throughout the process,

ensuring the availability of a high-quality dataset that served as

the backbone of our model training and evaluation. We are truly

grateful for Avilash Panda's expertise and support from the

Indian Institute of Teacher Education, Ajay Kumar's

contributions from the National Forensic Science University, and

Shambhu nath Upadhyay's assistance from Maharaja Sayajirao

University of Baroda. Their collaboration and assistance

significantly enriched the research process, enabling us to

achieve our objectives effectively.

We would also like to acknowledge their enthusiasm, valuable

insights, and discussions that enhanced our understanding of the

research problem. Their input and suggestions greatly

contributed to the overall quality and depth of our work. We

express our deepest appreciation for their contributions, and we

are honored to have had the opportunity to work alongside them.

Their commitment to excellence and their collaborative spirit

have been truly inspiring.

Lastly, we would like to thank our institutions, the Indian

Institute of Teacher Education, the National Forensic Science

University, and Maharaja Sayajirao University of Baroda, for

providing us with the necessary resources and support

throughout this research endeavor. Once again, we extend our

sincerest gratitude to Avilash Panda, Ajay Kumar, and Shambhu

nath Upadhyay for their invaluable assistance, dedication, and

collaborative efforts in this research project.

REFERENCES

(1) Bishop, C. M. (2006). Pattern Recognition and Machine

Learning. Springer.

(2) Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., &

Sutskever, I. (2019). Language models are unsupervised

multitask learners. OpenAI Blog, 1(8).

(3) Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018).

Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:1810.04805.

(4) Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,

Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., &

Brew, J. (2020). Transformers: State-of-the-art natural

language processing. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language

Processing: System Demonstrations (pp. 38-45).

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

16

(5) Bloom, B. S. (1956). Taxonomy of educational objectives.

Vol. 1: Cognitive domain. New York: McKay, 20-24.

(6) McKinney, W. (2010). Data structures for statistical

computing in python. In Proceedings of the 9th Python in

Science Conference (Vol. 445, pp. 51-56).

(7) Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., ... & Vanderplas, J. (2011). Scikit-

learn: Machine learning in Python. Journal of machine

learning research, 12(Oct), 2825-2830.

(8) Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O.,

Pedregosa, F., & Mueller, A. (2014). Scikit-learn.

GetMobile: Mobile Computing and Communications,

19(1), 29-33.

(9) Zhang, H., Li, D., Zhang, X., & Zou, Q. (2010). Feature

extraction for gene expression data. In Advanced

Computational Intelligence (ICACI), 2010 Third

International Conference on (pp. 189-192). IEEE.

(10) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., ... & Lin, Z. (2019). Pytorch: An imperative

style, high-performance deep learning library. In Advances

in neural information processing systems (pp. 8024-8035).

(11) Loshchilov, I., & Hutter, F. (2019). Decoupled weight

decay regularization. In Proceedings of the International

Conference on Learning Representations (ICLR).

(12) LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11), 2278-2324.

(13) Kingma, D. P., & Ba, J. (2015). Adam: A method for

stochastic optimization. In Proceedings of the International

Conference on Learning Representations (ICLR).

(14) Kohavi, R. (1995). A study of cross-validation and

bootstrap for accuracy estimation and model selection. In

Proceedings of the 14th international joint conference on

Artificial intelligence (Vol. 2, pp. 1137-1143).

(15) Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,

J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,

Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,

J., Winter, C., ... Amodei, D. (2020). Language Models are

Few-Shot Learners. arXiv preprint arXiv:2005.14165.

(16) Naber, D. (2003). A rule-based style and grammar checker.

Diploma thesis, University of Bielefeld.

(17) ReportLab. (2020). ReportLab: PDF Processing with

Python. Retrieved from https://www.reportlab.com/

AUTHORS DETAILS

First Author

Tejasvi Vijay Panchal

Name: Tejasvi Vijay Panchal

Email: tejasvi007panchal@gmail.com

Contact(Mob and Landline): 7014614791

Permanent Postal Address: 50/157, Behind Apex Hospital, Rajat Path,

Mansarovar, Jaipur, Rajasthan. Pin-302020

Current Affiliation/ Student(UG/PG/PhD): PG

Current Organization/ Institute: Indian Institute of Teacher Education,

Gandhinagar

Organization / Institute Email & Contact: contact@iite.ac.in, (079)-

23243734, (079) - 29999501

Organization / Institute Address: Ramkrushna Paramhans Vidya Sankul

Near KH-5, KH Road, Sector - 15, Gandhinagar - 382016 (Gujarat)

Membership detail: P2P-84-2023

Project ID: CSE-DEG-036-2023

Objective for Publishing the Article as Preprint: Academic excellence and

research

mailto:contact@iite.ac.in

 International Journal for Research in Emerging Science and Technology, Volume-10, 2024 e-ISSN: 2349-7610

17

Second Author Lakshya Singh Chouhan

Name : Lakshya Singh Chouhan

Email: lakshyasinghchouhan2509@gmail.com

contact : 9352444405

permanent Postal Address : shilp colony jhotwara jaipur .

Current Affiliation/ Student(UG/PG/PhD): UG

Current Organization/Institute: Poornima Institute of Engineering and

technology

Organization/Institute Email & Contact:

2022pietadlakshya031@poornima.org

Organization / Institute Address:sitapura

Membership detail: P2P-91-2023

Project ID: CSE-DEG-036-2023

Objective for Publishing the Article as Preprint: Integration of AI into

education

mailto:lakshyasinghchouhan2509@gmail.com

